Synlett 2015; 26(01): 84-86
DOI: 10.1055/s-0034-1378920
letter
© Georg Thieme Verlag Stuttgart · New York

Direct Conversion of Aromatic Aldehydes into Benzamides via Oxidation with Potassium Permanganate in Liquid Ammonia

Damian Antoniak
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw 42, Poland   Fax: +48(22)6326681   Email: icho-s@icho.edu.pl
,
Arkadiusz Sakowicz
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw 42, Poland   Fax: +48(22)6326681   Email: icho-s@icho.edu.pl
,
Rafał Loska
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw 42, Poland   Fax: +48(22)6326681   Email: icho-s@icho.edu.pl
,
Mieczysław Mąkosza*
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw 42, Poland   Fax: +48(22)6326681   Email: icho-s@icho.edu.pl
› Author Affiliations
Further Information

Publication History

Received: 07 August 2014

Accepted after revision: 13 October 2014

Publication Date:
14 November 2014 (online)


Abstract

Oxidation of aromatic aldehydes by KMnO4 in liquid ammonia gives amides directly. The reaction proceeds satisfactorily when the aldehydes are activated by electron-withdrawing substituents on the ring.

Supporting Information

 
  • References and Notes

  • 2 Shie J.-J, Fang J.-M. J. Org. Chem. 2003; 68: 1158
  • 3 Wang G, Yu Q.-Y, Chen S.-Y, Yu X.-Q. Org. Biomol. Chem. 2014; 12: 414
  • 4 Nie R, Shi J, Xia S, Shen L, Chen P, Hou Z, Xiao F.-S. J. Mater. Chem. 2014; 22: 18115 ; and references cited therein
    • 5a Wang Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 7250
    • 5b Vanjari R, Guntreddi T, Nand Singh K. Org. Lett. 2013; 15: 4908
    • 5c Sharif M, Gong J.-L, Langer P, Beller M, Wu X.-F. Chem. Commun. 2014; 50: 4747
    • 6a Ekone-Kovi K, Wolf C. Org. Synth. 2010; 87: 1
    • 6b Giguère-Bisson M, Yoo W.-J, Li C.-J. Org. Synth. 2011; 88: 14
    • 6c Möhlmann L, Ludwig S, Blechert S. Beilstein J. Org. Chem. 2013; 9: 602
    • 6d Wang W, Zhao X.-M, Wang J.-L, Geng X, Gong J.-F, Hao X.-Q, Song M.-P. Tetrahedron Lett. 2014; 55: 3192
  • 7 Reichardt C. Solvents and Solvent Effects in Organic Chemistry . Wiley-VCH; Weinheim: 2003. 3rd ed
  • 8 Mąkosza M. Tetrahedron 1968; 24: 175
    • 9a Ji P, Atherton J, Page MI. Org. Biomol. Chem. 2012; 10: 5732
    • 9b Ji P, Atherton J, Page MI. J. Org. Chem. 2011; 76: 1425
    • 9c Ji P, Atherton J, Page MI. J. Org. Chem. 2011; 76: 3286
    • 10a van der Plas HC, Woźniak M. Croat. Chem. Acta 1968; 59: 33
    • 10b Szpakiewicz B, Grzegorek M. Russ. J. Org. Chem. 2004; 40: 829
  • 11 Mąkosza M, Staliński K. Chem. Eur. J. 1997; 3: 2025
  • 12 General Procedure for the Oxidation of Aldehydes to Amides in Liquid AmmoniaUnder an argon atmosphere, liquid NH3 (25 mL) was condensed in a two-neck round-bottom flask immersed in a dry ice cooling bath and equipped with a dry ice reflux condenser. Aldehyde (7.34 mmol) was added, and the resulting solution (or suspension) was stirred for 1 h. KMnO4 (7.34 mmol, 1.16 g) was added, the cooling bath was removed, and the reaction mixture was stirred for another hour with gentle reflux of NH3. Na2SO3 (22.0 mmol, 2.78 g) was added, the reflux condenser was removed, and the NH3 was allowed to evaporate spontaneously. The dark-brown residue was treated with 6 M HCl (30 mL), and the resulting precipitate was filtered, washed with H2O (100 mL) and sat. aq NaHCO3 (20 mL). All products were recrystallized from EtOH.3-BromobenzamideColorless crystals; mp 152–156 °C (lit.6d 157–159 °C). IR (KBr): νmax = 3353, 3175, 1659, 1623, 1564, 1427, 1389, 1123, 1066, 901, 794 cm–1. 1H NMR (400 MHz): δ = 7.44 (1 H, t, J = 7.8 Hz), 7.56 (1 H, br s), 7.73 (1 H, ddd, J = 7.8, 2.0, 1.0 Hz), 7.90 (1 H, dm, J = 7.8 Hz), 8.08 (1 H, t, J = 1.8 Hz), 8.15 (1 H, br s). 13C NMR (100 MHz): δ = 122.5, 127.5, 131.1, 131.4, 134.9, 137.4, 167.3.
  • 13 Wiberg KB, Steward R. J. Am. Chem. Soc. 1955; 77: 1786
  • 14 Mąkosza M, Staliński K. Tetrahedron Lett. 1998; 39: 3575