Synlett 2015; 26(16): 2313-2317
DOI: 10.1055/s-0034-1378832
letter
© Georg Thieme Verlag Stuttgart · New York

Intermolecular Reductive Heterocyclization of Potassium 2-Acyl-1,1,3,3-tetracyanopropenides

Arthur Alexandrovich Grigor’ev
a  I.N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015, Russian Federation   Email: serg31.chem@mail.ru
,
Sergey Vladimirovich Karpov*
a  I.N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015, Russian Federation   Email: serg31.chem@mail.ru
,
Yakov Sergeevich Kayukov
a  I.N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015, Russian Federation   Email: serg31.chem@mail.ru
,
Oleg Evgenyevich Nasakin
a  I.N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015, Russian Federation   Email: serg31.chem@mail.ru
,
Victor Alexandrovich Tafeenko
b  Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation
› Author Affiliations
Further Information

Publication History

Received: 28 May 2015

Accepted after revision: 03 July 2015

Publication Date:
12 August 2015 (eFirst)

Abstract

2-Acyl-1,1,3,3-tetracyanopropenides undergo intermolecular reductive heterocyclization under the action of mercaptoethanol or sodium borohydride, resulting in the formation of 2-[5-amino-4-cyano-2-alkyl(aryl)furan-3(2H]-ylidene)malononitriles in high yields and excellent purities, These are of interest as potential precursors to organic nonlinear optical (NLO) materials and prospective antibiofilm antimicrobial agents.

Supporting Information

 
  • References and Notes

  • 1 Karpov SV, Kayukov YS, Bardasov IN, Kayukovа OV, Ershov OV, Nasakin OE. Russ. J. Org. Chem. 2011; 47: 405
  • 2 Bardasov IN, Kayukovа OV, Kayukov YS, Ershov OV, Nasakin OE, Tafeenko VA. Russ. J. Org. Chem. 2009; 45: 1325
  • 3 Karpov SV, Kayukov YS, Bardasov IN, Ershov OV, Nasakin OE, Tafeenko VA. Russ. J. Org. Chem. 2011; 47: 1161
  • 4 Karpov SV, Kayukov YS, Bardasov IN, Kayukovа OV, Lipin KV, Nasakin OE. Russ. J. Org. Chem. 2011; 47: 1492
  • 5 Maruoka H, Tomioka Y, Yamazaki M. J. Heterocycl. Chem. 2002; 39: 743
  • 6 Wamhoff H, Thiemig HA. Chem. Ber. 1986; 119: 1070
  • 7 Testa MG, Perrini G, Chiacchio U, Corsaro A. Phosphorus, Sulfur Silicon Relat. Elem. 1994; 86: 75
  • 8 Testa MG, Perrini G, Chiacchio U, Corsaro A. J. Chem. Res(S). 1993; 302
  • 9 Wamhoff H, Thiemig HA, Puff H, Friedrichs E. Chem. Ber. 1985; 118: 4782
  • 10 Moiseeva IG, Nasakin OE, Lukin PM, Romanov VN, Tafeenko VA. Chem. Heterocycl. Compd. 1990; 277: 828
  • 11 Yamagata K, Akizuki K, Yamazaki M. J. Prakt. Chem. 1998; 340: 627
  • 12 Ji Y, Qian Y, Lu W. J. Mater. Chem. 2012; 22: 12375
  • 13 He M, Leslie TM, Sinicropi JA. Chem. Mater. 2002; 14: 4662
  • 14 Liu S, Haller HMa, Dalton LR, Jang S.-H, Jen AK.-Y. Adv. Mater. 2003; 15: 603
  • 15 Vannini L, Ndagijimana M, Saracino P, Vernocchi P, Corsetti A, Vallicelli M, Cappa F, Cocconcelli PS, Guerzoni ME. Int. J. Food Microbiol. 2007; 120: 25
  • 16 Lönn-Stensrud J, Petersen FC, Benneche T, Scheie AA. Oral Microbiol. Immunol. 2007; 22: 340
  • 17 Witsø IL, Benneche T, Vestby LK, Nesse LL, Lönn-Stensrud J, Scheie AA. Pathog. Dis. 2014; 70: 297
  • 18 Castillo S, Heredia N, García S. Folia Microbiol. (Praha, Czech. Repub.) 2015; 60: 89
  • 19 Kayukov YS, Karpov SV, Bardasov IN, Kayukovа OV, Ershov OV, Nasakin OE. Russ. J. Org. Chem. 2012; 48: 1107
  • 20 Figure 2 shows the atom numbering in 3a. Displacement ellipsoids are drawn at the 50% probability levels. Cell parameters (3a): a = 13.9259(5), b = 8.8709(4), c = 10.5576(6) Å, β = 90°, β = 98.44(0)°, γ = 90°; V = 1290.12(10) Å3, Z = 4, D calc = 1.278 g cm–3. The crystal is monoclinic and the space group is P1 21/c1. CCDC 912663 for 3a contains the supplementary crystallographic data for this Letter. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 21 Typical Procedure for the Preparation of 2-[5-Amino-2-aryl-4-cyanofuran-3(2H)-ylidene]malononitriles 3a–j via the Reaction of Propenides 1 with Sodium Borohydride NaBH4 (0.56 g, 15 mmol) was added to a solution of potassium 2-acyl-1,1,3,3-tetracyanopropenide 1 (10 mmol) in H2O (20 mL), and the mixture was stirred at r.t. until the reaction became colorless. The resulting solution was filtered and then neutralized by addition of aq 5% H2SO4. The white precipitate was filtered, recrystallized from AcOH, and dried in vacuo. Compound 3a: yield 82% (2.03 g; via reaction with mercaptoethanol) or 86% (2.13 g; via reaction with NaBH4), white solid, mp 262–263 °С (dec.). 1H NMR (500.13 MHz, DMSO-d 6): δ = 6.81 (1 H, s, CH), 7.41–7.52 (5 H, m, Ph), 10.07 (2 H, s, NH2). IR (mineral oil): 3318, 3115 (NH2), 2223, 2212 (CN), 1663 (C=C) cm–1. MS (EI, 70 eV): m/z (%) = 248 [M]+ (53), 221 [M – HCN]+ (7), 205 [M – HNCO]+ (33), 178 [M – HNCO – HCN]+ (100). 2-[5-Amino-4-cyano-2-methylfuran-3(2H)-ylidene]malononitrile (3k) NaBH4 (0.56 g, 15 mmol) was added to a solution of potassium 2-acetyl-1,1,3,3-tetracyanopropenide 1 (10 mmol) in H2O (20 mL), and the mixture was stirred at r.t. until the reaction became colorless. The resulting solution was filtered, then neutralized by addition of aq 5% H2SO4 and subsequently extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (CaCl2), filtered, and concentrated in vacuo. The resulting residue was purified by flash chromatography (SiO2, EtOAc), and the relevant fractions were concentrated in vacuo until a precipitate formed. The white solid was filtered, washed with hexane (3 × 5 mL) and dried in air; yield 62% (1.15 g), mp 208–210 °С (dec.). 1H NMR (500.13 MHz, DMSO-d 6): δ = 1.56 (3 H, d, 3 J = 6.6 Hz, СН3), 5.84 (1 H, q, 3 J = 6.7 Hz, CH), 9.98 (2 H, br s, NH2). IR (mineral oil): 3366, 3254 (NH2), 2229, 2214 (CN), 1684 (C=C) cm–1. MS (EI, 70 eV): m/z (%) = 186 [M]+ (22), 159 [M – HCN]+ (100), 116 [M – HNCO – HCN]+ (47). Typical Procedure for the Preparation of 2-[5-Amino-2-aryl-4-cyanofuran-3(2H)-ylidene]malononitriles 3a–h via the Reaction of Propenides 1 with Mercaptoethanol Mercaptoethanol (1.95 g, 25 mmol) was added dropwise to a solution of potassium 2-acyl-1,1,3,3-tetracyanopropenide 1 (10 mmol) in H2O (20 mL), and the mixture was stirred at r.t. for 10–15 min. The white precipitate was filtered, recrystallized from AcOH, and dried in vacuo. 2-[5-Amino-4-cyano-2-(2′-hydroxyethylthio)-2-methylfuran-3(2H)-ylidene]malononitrile (4a) Mercaptoethanol (1.17 g, 15 mmol) was added dropwise to a solution of potassium 2-acetyl-1,1,3,3-tetracyanopropenide 1 (10 mmol) in H2O (20 mL), and the mixture was stirred at r.t. for 10 min. The yellow precipitate was filtered, recrystallized from i-PrOH (10 mL), and dried in air; yield 72% (1.89 g), mp 205–207 °С (dec.). 1H NMR (500.13 MHz, DMSO-d 6): δ = 1.94 (3 H, s, CH3), 3.79 (3 H, s, CH3O), 2.52–2.58 (1 Н, m, SCH2), 2.60–2.67 (1 Н, m, SCH2), 3.51 (2 H, br s, ОCH2), 4.98 (1 H, br s, OH), 10.12 (2 H, br s, NH2). IR (mineral oil): 3620 (OH), 3368, 3254 (NH2), 2224, 2209 (CN), 1696 (C=C) cm–1. MS (EI, 70 eV): m/z (%) = 262 [М]+ (7), 185 (31), 184 (10), 78 (23), 60 [C2H4S]+ (44), 59 (30), 47 (67), 43 (77). Anal. Calcd for C11H10N4O2S: C, 50.37; H, 3.84; N, 21.36. Found: C, 50.68; H, 3.82; N, 21.71
  • 22 Typical Procedure for the Preparation of 2-[5-Amino-2-aryl-4-cyano-2-(2′-hydroxyethylthio]furan-3(2H)-ylidene)malononitriles 4b–f Mercaptoethanol (1.17 g, 15 mmol) was added dropwise to a solution of potassium 2-acyl-1,1,3,3-tetracyanopropenide 1 (10 mmol) in a mixture of EtOH (20 mL) and Et3N (1.0 g, 10 mmol). The resulting mixture was stirred at r.t. until reaction was complete (TLC, 20–25 min), filtered, and the filtrate poured into distilled H2O (40 mL) and subsequently neutralized by addition of aq 5% H2SO4. The white precipitate was filtered, recrystallized from i-PrOH (10 mL), and dried in air. Compound 4b: yield 86% (2.79 g), mp 137–139 °С (dec.). 1H NMR (500.13 MHz, DMSO-d 6): δ = 2.65–2.70 (1 H, m, SCH2), 2.73–2.79 (1 H, m, SCH2), 3.61 (2 H, t, 3 J = 6.4 Hz, ОCH2), 4.98 (1 Н, br s, ОН), 7.50–7.53 (3 H, m, Ar), 7.56–7.58 (2 H, m, Ar), 10.27 (2 H, br s, NH2). IR (mineral oil): 3634 (OH), 3391, 3218 (NH2), 2230, 2210 (CN), 1673 (C=C) cm–1. MS (EI, 70 eV): m/z (%) = 324 [М]+ (1), 248 (12), 178 (17), 92 (23), 77 (41), 60 [C2H4S]+ (100), 59 (27)