Synlett 2015; 26(15): 2180-2184
DOI: 10.1055/s-0034-1378819
letter
© Georg Thieme Verlag Stuttgart · New York

Observation of High-Valent Manganese(V)–Corrole Complexes During Metalation of meso-Functionalized A3-Corroles under Aerobic Conditions

Armin Guntner
a  Institute of Organic Chemistry, Johannes Kepler University Linz, ­Altenberger Straße 69, 4040 Linz, Austria   eMail: wolfgang.schoefberger@jku.at
,
Felix Faschinger
a  Institute of Organic Chemistry, Johannes Kepler University Linz, ­Altenberger Straße 69, 4040 Linz, Austria   eMail: wolfgang.schoefberger@jku.at
,
Stefan Aichhorn
a  Institute of Organic Chemistry, Johannes Kepler University Linz, ­Altenberger Straße 69, 4040 Linz, Austria   eMail: wolfgang.schoefberger@jku.at
,
Stefan Müllegger
b  Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
,
Wolfgang Schöfberger*
a  Institute of Organic Chemistry, Johannes Kepler University Linz, ­Altenberger Straße 69, 4040 Linz, Austria   eMail: wolfgang.schoefberger@jku.at
c  Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 11. Mai 2015

Accepted after revision: 24. Juni 2015

Publikationsdatum:
30. Juli 2015 (online)


Abstract

We report the synthesis of alkoxy-functionalized Mn(III)–A3-corrole and Mn(V)–corrole complexes. Depending on the length of the alkoxy chain attached to the meso-tetrafluoropenyl moiety, the oxidation state of the central manganese ion could either be tuned to +III in case of O–C6 or O–C12 chains, or to +V in case of O–C18 chains. The Mn(V)–corrole displays metal-centered redox chemistry in solution. Reduction with SnCl2 or Ph3P leads to the clean conversion yielding the corresponding Mn(III) derivative.

Supporting Information

 
  • References and Notes

  • 1 Gross Z, Gray HB. Comments Inorg. Chem. 2006; 61
  • 2 Ghosh A, Steene E. J. Biol. Inorg. Chem. 2001; 6: 739
  • 3 Liu H.-Y, Yam F, Xie Y.-T, Li X.-Y, Chang CK. J. Am. Chem. Soc. 2009; 131: 12890
  • 4 Gao Y, Åkermark T, Liu J, Sun L, Åkermark B. J. Am. Chem. Soc. 2009; 131: 8726
    • 5a Gryko DT, Koszarna B. Org. Biomol. Chem. 2003; 1: 350
    • 5b Gryko DT, Koszarna B. Synthesis 2004; 2205
    • 5c Koszarna B, Gryko DT. J. Org. Chem. 2006; 71: 3707
  • 6 Lemon CM, Brothers PJ. J. Porphyrins Phthalocyanines 2011; 15: 809
  • 7 Mahammed A, Botoshansky M, Gross Z. Dalton Trans. 2012; 41: 10938
  • 8 Golubkov G, Bendix J, Gray HB, Mahammed A, Goldberg I, DiBilio AJ, Gross Z. Angew. Chem. Int. Ed. 2001; 2132
  • 9 Tortora L, Nardis S, Fronczek FR, Smith KM, Paolesse R. Chem. Commun. 2011; 47: 4243
  • 10 Saltsman I, Mahammed A, Goldberg I, Tkachenko E, Botoshansky M, Gross Z. J. Am. Chem. Soc. 2002; 124: 7411
  • 11 König M, Reith LM, Monkowius U, Knör G, Bretterbauer K, Schoefberger W. Tetrahedron 2011; 67: 4243
  • 12 Ngo TH, Puntoriero F, Nastasi F, Robeyns K, van Meervelt L, Campagna S, Dehaen W, Maes W. Chemistry 2010; 16: 5691
  • 13 Ngo TH, Nastasi F, Puntoriero F, Campagna S, Dehaen W, Maes W. J. Org. Chem. 2010; 75: 2127
  • 14 Tasior M, Voloshchuk R, Poronik YM, Rowicki T, Gryko DT. J. Porphyrins Phthalocyanines 2011; 15: 1011
  • 15 Kadish KM, Han BC, Franzen MM, Araullo-McAdams C. J. Am. Chem. Soc. 1990; 112: 8364
  • 16 Samaroo D, Vinodu M, Chen X, Drain CM. J. Comb. Chem. 2007; 9: 998
  • 17 Costa JI, Tomé AC, Neves MG, Cavaleiro JA. J. Porphyrins Phthalocyanines 2011; 15: 1116
    • 18a Hori T, Osuka A. Eur. J. Org. Chem. 2010; 2379
    • 18b Barata JF. B, Santos CI. M, Neves M, Graça PM. S, Faustino MA. F, Cavaleiro JA. S In Topics in Heterocyclic Chemistry . Vol. 33. Paolesse R. Springer; Berlin, Heidelberg: 2014: 79-141
  • 19 Reith LM, Stiftinger M, Monkowius U, Knör G, Schoefberger W. Inorg. Chem. 2011; 50: 6788
    • 20a Reith LM, Koenig M, Schwarzinger C, Schoefberger W. Eur. J. Inorg. Chem. 2012; 4342
    • 20b Schmidlehner M, Faschinger F, Reith LM, Ertl M, Schoefberger W. Appl. Organomet. Chem. 2013; 27: 395
    • 20c Faschinger F, Aichhorn S, Himmelsbach M, Schoefberger W. Synthesis 2014; 46: 3085
  • 21 Bernadou J, Meunier B. Chem. Commun. 1998; 2167
  • 22 The following procedures are representative. General Procedure for the SNAr Reactions Compound 1 and NaH (30 equiv, 60%, in mineral oil) were placed in a three-neck round-bottom flask under argon. THF and hydroxy nucleophile (4 equiv) were added, and the reaction mixture was refluxed and stirred for 75 min. The reaction was monitored by TLC and after complete conversion H2O (8 mL) was added to the mixture. The organic solvent was evaporated under reduced pressure. Sat. NH4Cl solution (10 mL) was added to the aqueous phase, and the solution was extracted twice with CH2Cl2. The combined organic phases were extracted three times with H2O. The solvent was evaporated under reduced pressure. Purification was performed by column chromatography (silica gel; CH2Cl2–heptanes, 2:3) to obtain product 2ac in 90, 93, and 95% yield, respectively. General Procedure and Comments for the Metalation Reactions Free-base corroles 2ac (0.014 mmol) were dissolved in DMF (3 mL), Mn(OAc)2·4H2O (34.3 mg, 140 μmol, 10 equiv) was added, and the reaction mixture was refluxed for 30 min under aerobic conditions. The DMF was evaporated under reduced pressure and the residue was purified via column chromatography (silica gel; CH2Cl2–MeOH, 2:1). The products 3ac were obtained in 68, 72, and 69% yield, respectively. Metalation experiments of the derivatives 2a and 2b under O2 and reflux conditions for 120 min led only to traces of the oxidized compounds. The metalation of 2a and 2b under dilute conditions did not afford high-valent manganese(+V) corroles. Analytical Data of 5,10,15-Tris[2,3,5,6-tetrafluoro-4-(hexyl­oxy)phenyl] Corrole (2a) Yield 90%. 1H NMR (300 MHz, CDCl3, 25 °C): δ = 9.06 (d, J = 4.26 Hz, 2 H, Hβ), 8.79 (d, J = 4.71 Hz, 2 H, Hβ), 8.60 (d, J = 4.77 Hz, 2 H, Hβ), 8.58 (d, J = 4.23 Hz, 2 H, Hβ), 4.55 (t, J = 6.50 Hz, 6 H), 2.00 (quin, J = 7.04 Hz, 6 H), 1.65 (quin, J = 7.24 Hz, 9 H), 1.47 (m, 18 H) ppm. 13C NMR (125.8 MHz, CDCl3, 30 °C): δ = 147.9, 147.4, 145.9, 145.4, 142.4, 141.1, 140.5, 138.8, 135.0, 130.4, 127.7, 126.3, 121.6, 116.9, 114.1, 111.9, 99.4, 95.2, 75.8, 31.7, 30.3, 25.5, 22.8, 19.9, 14.24 ppm. 19F NMR (282.4 MHz, CDCl3, 30 °C): δ = –139.46 (dd 3 J = 22.9, 4 J = 7.9 Hz, 2 F, F o ), –140.0 (dd, 3 J = 22.0, 4 J = 7.3 Hz, 4 F, F o ), –157.1 (dd, 3 J = 22.2, 4 J = 7.4 Hz, 4 F, F m ), –157.5 (dd, 3 J = 23.1, 4 J = 8.0 Hz, 2 F, F m ) ppm. MS (ESI+): m/z calcd for C55H50F12N4O3: 1043.3764 [M + H]+, 1065.3584 [M + Na]+; found: 1043.3763 [M + H]+, 1065.3577 [M + Na]+. Analytical Data of 5,10,15-Tris[2,3,5,6-tetrafluoro-4-(dodecyl­oxy)phenyl] Corrole (2b) Yield 93%. 1H NMR (300 MHz, CDCl3, 25 °C): δ = 9.05–8.40 (m, 8 H, Hβ), 4.45 (t, 6 H, CH2), 3.50 (m, 4 H, CH2), 2.00–1.85 (m, 6 H, CH2), 1.60–0.75 (m, 54 H, CH2, 9 H, CH3) ppm. 19F NMR (282.32 MHz, CDCl3, 25 °C): δ = –139.5 (dd, 3 J = 22.9, 4 J = 7.9 Hz, 2F, F o ), –140.0 (dd, 3 J = 22.0, 4 J = 7.3 Hz, 4 F, F o ), –157.06 (dd, 3 J = 22.2, 4 J = 7.4 Hz, 4 F, F m ), –157.5 (dd, 3 J = 23.1, 4 J = 8.0 Hz, 2F, F m ) ppm. MS (APPI): m/z calcd for C73H86F12N4O3: 1295.6578 [M + H]+; found: 1295.65784 [M + H]+. Analytical Data of 5,10,15-Tris[2,3,5,6-tetrafluoro-4-(octadecyloxy)phenyl] Corrole (2c) Yield 95%. 1H NMR (700 MHz, CDCl3, 25 °C): δ = 9.20–8.50 (m, 8 H, β-H), 4.55 [m, 6 H, OCH2 (position 1)], 2.05 [m, 6 H, CH2 (position 2)], 1.87 [m, 6 H, CH2 (position 3)], 1.75 [m, 6 H, CH2 (position 4)], 1.70–1.10 [m, 78 H, CH2 (position 5–7)], 0.88 (t, 27 H, CH3) ppm. 13C NMR (175 MHz, CDCl3, 25 °C): δ = 147.5, 146.9, 146.1, 145.5, 142.1, 142.3, 141.9, 141.8, 140.7, 140.6, 140.5, 140.4, 138.6, 138.4, 116.8, 113.9, 111.7, 95.1 (147.5–95.1 carbon atoms of the macrocycle), 37.1, 32.8, 32.0, 30.4, 30.2, 30.1, 30.0, 29.8, 29.7, 29.7, 29.5, 29.4, 29.3, 27.1, 25.7, 19.8, 14.4, 14.2, 14.1 (37.1–4.1 carbon atoms of the aliphatic side chain) ppm. 1H–13C HSQC was used for the determination of the correlation between aromatic carbon and corresponding protons. HRMS (APPI): m/z calcd for C91H122F12N4O3: 1547.93950 [M + H]+; found: 1547.93945 [M + H]+. Analytical Data of Manganese(III) 5,10,15-Tris[2,3,5,6-tetrafluoro-(dodecyloxy)phenyl] Corrole (3b) Yield 72%. 1H NMR (700 MHz, CDCl3, 25 °C, strong paramagnetic shift): δ = –1.88 (br s, 2 H), –15.80 (br s, 2 H), –39,59 (br s, 2 H), –118.13 (v br s, 2 H) ppm. 19F NMR (282.4 MHz, CDCl3, 25 °C): δ = –118.9 (br s), –129.2 (br s), –152.8 (s), –154.1 (s) ppm. UV/Vis (CH2Cl2): λmax (ε): 398 (1.8·104) (shoulder), 419 (2.0·104), 476 (1.65·104), 536 (0.63·104), 575 (0.87·104), 608 (0.93·104), 629 (1.1·104) nm. Anal. Calcd for C43H26F12MnN7O9S3 (1347.4): C, 65.07; H, 6.21; F, 16.92; N, 4.16. Found: C, 65.21; H, 6.03; F, 16.74; N, 3.91. MS (APPI-TOF): m/z calcd for C73H83F12MnN4O3: 1347.5654 [M + 1]+; found: 1347.5764 [M + H]+. Analytical Data of Manganese(V) Oxo-5,10,15-tris[2,3,5,6-tetrafluoro-4-(octadecyloxy)-phenyl] Corrole (3c) Yield 69%. 19F NMR (282.4 MHz, CDCl3, 25 °C): well-resolved peaks at δ = –138.6 (6 F), –156.5 (6 F) ppm. UV/Vis (CH2Cl2): λmax (ε): 313 (0.8·104), 365 (1.6·104), 415 (2·104), 590 (0.63·104) nm. Anal. Calcd for C91H119F12MnN4O4 (1615.8959): C, 68.27; H, 7.56; F, 14.24; N, 3.50; O, 3.00. Found: C, 67.57; H, 7.38; F, 14.05; N, 3.51; O, 4.01. MS (APPI-TOF): m/z calcd for C91H119F12MnN4O4: 1615.8498 [M + H]+; found: 1615.8438 [M + H]+. Reduction of 3c with Tin(II) Chloride and Triphenylphosphine Method A Compd 3c (10 mg, 6.2 μmol) was dissolved in CH2Cl2 (1 mL) and MeOH (0.5 mL), water-free SnCl2 (1.2 mg, 6.2 μmol) was added and a change in color of the reaction solution from red-brown to green was recognized immediately. Method B Ph3P (10 mg) was dissolved in CH2Cl2 (1 mL) and MeOH (0.5 mL). Catalytic amounts (10 mol%) of 3c were added and a color change of the reaction solution from red-brown to green was recognized immediately. Analytical Data 1H NMR (700 MHz, CDCl3, 25 °C, strong paramagnetic shift): δ = –1.88 (br s, 2 H), –15.80 (br s, 2 H), –39.59 (br s, 2 H), –118.13 (v br s, 2 H) ppm. 19F NMR (282.4 MHz, CDCl3, 25 °C): δ = –118.9 (br s), –129.2 (br s), –152.8 (s), –154.1 (s) ppm. UV/Vis (CH2Cl2): λmax (ε): 393 (1.8·104) (shoulder), 417 (2.0·104), 472 (1.65·104), 536 (0.63·104), 558 (0.87·104), 601 (0.93·104), 625 (1.1·104) nm. Anal. Calcd for C91H119F12MnN4O3 (1599.8969): C, 68.27; H, 7.56; F, 14.24; N, 3.50; O, 3.00. Found: C, 68.12; H, 7.27; F, 14.18; N, 3.57; O, 2.94. MS (APPI-TOF): m/z calcd for C91H119F12MnN4O3: 1599.8549 [M + H]+; found: 1599.8472 [M + H]+.