Synlett 2015; 26(14): 1991-1996
DOI: 10.1055/s-0034-1378726
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Annulation of 2,2-Dibromobiphenyls with Alkynes: Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes

Jun Ma
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
,
Gaoqiang Li*
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
,
Yan Qiao
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
,
Jingxuan Tu
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
,
Sha Liu
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
,
Feng Xu*
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 20 March 2015

Accepted after revision: 10 May 2015

Publication Date:
15 July 2015 (online)


Abstract

A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes has been realized. The methodology provides an efficient approach to dibenzochrysene derivatives starting from simple reactants in two steps.

Supporting Information

 
  • References and Notes


    • For reviews of PAHs in organic electronics, see:
    • 1a Berresheim AJ, Müller M, Müllen K. Chem. Rev. 1999; 99: 1747
    • 1b Watson MD, Fechtenkötter A, Müllen K. Chem. Rev. 2001; 101: 1267
    • 1c Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
    • 1d Anthony JE. Chem. Rev. 2006; 106: 5028
    • 1e Sergeyev S, Pisula W, Geerts YH. Chem. Soc. Rev. 2007; 36: 1902
    • 1f Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
    • 1g Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 1h Watanabe M, Chen K.-Y, Chang YJ, Chow TJ. Acc. Chem. Res. 2013; 46: 1606
  • 2 Hepworth JD, Waring DR, Waring MJ. Basic Concepts in Chemistry: Aromatic Chemistry . John-Wiley & Sons; New York: 2003
  • 3 Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y. Nature (London) 2010; 464: 76
  • 4 Matsuo Y, Sato Y, Hashiguchi M, Matsuo K, Nakamura E. Adv. Funct. Mater. 2009; 19: 2224
    • 5a Lewis FD, Barancyk SV, Burch EL. J. Am. Chem. Soc. 1992; 114: 3866
    • 5b Lewis FD, Burch EL. J. Phys. Chem. 1996; 100: 4055
  • 6 Machado AM, Munaro M, Martins TD, Davila LY. A, Giro R, Caldas MJ, Atvars TD. Z, Akcelrud LC. Macromolecules 2006; 39: 3398
    • 7a Honda K, Tada A, Hayashi N, Abe F, Yamauchi T. Experientia 1995; 51: 753
    • 7b Rao KN, Bhattacharya RK, Venkatachalam SR. Cancer Lett. 1998; 128: 183
    • 7c Ganguly T, Badheka LP, Sainis KB. Phytomedicine 2001; 8: 431
    • 7d Ganguly T, Khar A. Phytomedicine 2002; 9: 288
    • 7e Xi Z, Zhang R, Yu Z, Ouyang D, Huang R. Bioorg. Med. Chem. Lett. 2005; 15: 2673
    • 7f Banwell MG, Bezos A, Burns C, Kruszelnicki I, Parish CR, Su S, Sydnes MO. Bioorg. Med. Chem. Lett. 2006; 16: 181
  • 8 Tian H, Shi J, Dong S, Yan D, Wang L, Geng Y, Wang F. Chem. Commun. 2006; 3498
  • 9 He B, Tian H, Geng Y, Wang F, Müllen K. Org. Lett. 2008; 10: 773
    • 10a Peña D, Pérez D, Guitián E, Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
    • 10b Yoshikawa E, Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
    • 10c Liu Z, Larock RC. J. Org. Chem. 2007; 72: 223
    • 11a Kanno K.-I, Liu Y, Iesato A, Nakajima K, Takahashi T. Org. Lett. 2005; 7: 5453
    • 11b Thirunavukkarasu VS, Parthasarathy K, Cheng C.-H. Chem. Eur. J. 2010; 16: 1436
    • 11c Neo AG, López C, Romero V, Antelo B, Delamano J, Pérez A, Fernández D, Almeida JF, Castedo L, Tojo G. J. Org. Chem. 2010; 75: 6764
    • 11d Saifuddin M, Agarwal PK, Kundu B. J. Org. Chem. 2011; 76: 10122
    • 11e Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
    • 11f Li H, He K.-H, Liu J, Wang B.-Q, Zhao K.-Q, Hu P, Shi Z.-J. Chem. Commun. 2012; 48: 7028
    • 11g Korotvička A, Císařová I, Roithová J, Kotora M. Chem. Eur. J. 2012; 18: 4200
    • 11h Kwon Y, Cho H, Kim S. Org. Lett. 2013; 15: 920
    • 12a Cant AA, Roberts L, Greaney MF. Chem. Commun. 2010; 46: 8671
    • 12b Jafarpour F, Hazrati H, Nouraldinmousa S. Org. Lett. 2013; 15: 3816
    • 12c Periasamy M, Beesu M, Shanmugaraja M. Synthesis 2013; 45: 2913
    • 13a Shimizu M, Nagao I, Tomioka Y, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 8096
    • 13b Shimizu M, Nagao I, Tomioka Y, Kadowaki T, Hiyama T. Tetrahedron 2011; 67: 8014
    • 14a Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
    • 14b Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
    • 14c Ye F, Shi Y, Zhou L, Xiao Q, Zhang Y, Wang J. Org. Lett. 2011; 13: 5020
    • 14d Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 5714
    • 14e Hossain ML, Ye F, Liu Z, Xia Y, Shi Y, Zhou L, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 8689
    • 14f Nagata T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 8960
    • 14g Murai M, Hosokawa N, Roy D, Takai K. Org. Lett. 2014; 16: 4134
    • 14h Kwon Y, Kim I, Kim S. Org. Lett. 2014; 16: 4936
    • 15a Mandal AB, Lee G.-H, Liu Y.-H, Peng S.-M, Leung M.-K. J. Org. Chem. 2000; 65: 332
    • 15b Lin Y.-D, Cho C.-L, Ko C.-W, Pulte A, Wu Y.-T. J. Org. Chem. 2012; 77: 9979
  • 16 An W, Li G, Ma J, Tian Y, Xu F. Synlett 2014; 25: 1585
    • 17a Yamaguchi S, Swager TM. J. Am. Chem. Soc. 2001; 123: 12087
    • 17b Toal SJ, Trogler WC. J. Mater. Chem. 2006; 16: 2871
    • 17c Li C.-W, Wang C.-I, Liao H.-Y, Chaudhuri R, Liu R.-S. J. Org. Chem. 2007; 72: 9203
    • 17d Chaudhuri R, Hsu M.-Y, Li C.-W, Wang C.-I, Chen C.-J, Lai CK, Chen L.-Y, Liu S.-H, Wu C.-C, Liu R.-S. Org. Lett. 2008; 10: 3053
    • 17e Mochida K, Kawasumi K, Segawa Y, Itami K. J. Am. Chem. Soc. 2011; 133: 10716
    • 18a Scholl R, Mansfeld J. J. Ber. Dtsch. Chem. Ges. 1910; 43: 1734
    • 18b Kovacic P, Jones MB. Chem. Rev. 1987; 87: 357
  • 19 9,10-Disubustituted Phenanthrenes 3aa–3bd; General Procedure: A Schlenk flask was charged with 2,2′-dibromobiphenyls (0.3 mmol), alkyne (0.33 mmol), Pd(PPh3)2Cl2 (11 mg, 5 mol%), Xantphos (10 mg, 5.5 mol%) and K2CO3 (124 mg, 0.9 mmol) under N2. Mesitylene (5 mL) was added from a syringe, and the mixture was stirred at 150 °C until the reaction was complete (TLC). The mixture was cooled to r.t., and H2O (10 mL) was added. The resulting mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried over anhyd Na2SO4, and concentrated to give a residue that was purified by column chromatography (silica gel, PE–EtOAc). 9-(3-Methoxyphenyl)-10-phenylphenanthrene (3ac): white solid; yield: 63 mg (58%); mp189.8–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.81 (d, J = 8.3 Hz, 2 H), 7.60–7.68 (m, 3 H), 7.54–7.57 (m, 1 H), 7.46–7.51 (m, 2 H), 7.26–7.29 (m, 1 H), 7.18–7.25 (m, 3 H), 7.13–7.16 (m, 2 H), 6.70–6.79 (m, 3 H), 3.68 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 158.9, 140.9, 139.5, 137.0, 137.0, 131.9, 131.7, 131.0, 131.0, 130.0, 130.0, 128.5, 127.9, 127.7, 127.6, 126.6, 126.6, 126.5, 126.4, 123.8, 122.5, 122.5, 116.6, 112.4, 55.2. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1418. 9-(2-Methoxyphenyl)-10-phenylphenanthrene (3ad): faint yellow solid; yield: 23 mg (21%); mp 198.9–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.71 (dd, J = 8.3, 4.0 Hz, 2 H), 7.53–7.58 (m, 2 H), 7.47–7.50 (m, 1 H), 7.36–7.41 (m, 3 H), 7.07–7.16 (m, 6 H), 6.93 (dd, J = 7.4, 1.7 Hz, 1 H), 6.68–6.77 (m, 2 H), 3.49 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 156.2, 138.8, 136.5, 133.0, 131.3, 131.0, 130.7, 129.7, 129.1, 128.9, 127.5, 127.5, 126.7, 126.4, 126.2, 125.6, 125.5, 125.4, 125.2, 125.2, 121.5, 121.5, 119.0, 109.3, 54.1. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1407. 9-(4-Fluorophenyl)-10-phenylphenanthrene (3ae): white solid; yield: 55 mg (53%); mp 256.8–257.9 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.4 Hz, 2 H), 7.64–7.68 (m, 2 H), 7.47–7.56 (m, 4 H), 7.20–7.26 (m, 3 H), 7.08–7.14 (m, 4 H), 6.90–6.95 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 162.8, 160.3, 139.5, 137.7, 136.1, 135.5, 132.6, 132.5, 131.8, 131.0, 130.1, 127.9, 127.7, 127.6, 126.7, 126.6, 126.6, 126.5, 122.6, 122.5, 114.7, 114.5. HRMS (ESI): m/z calcd for [C26H17FNa]+: 371.1212; found: 371.1225. 9-(4-Ethylphenyl)-10-phenylphenanthrene (3af): white solid; yield: 77 mg (72%); mp 163.3–164.5 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.3 Hz, 2 H), 7.54–7.67 (m, 4 H), 7.45–7.50 (m, 2 H), 7.18–7.26 (m, 3 H), 7.14–7.16 (m, 2 H), 7.05 (s, 4 H), 2.61 (q, J = 7.6 Hz, 2 H), 1.21 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.2, 141.6, 139.7, 137.3, 137.2, 136.7, 132.1, 132.0, 131.1, 130.9, 130.0, 129.0, 128.0, 127.8, 127.6, 127.2, 127.0, 126.6, 126.3, 126.3, 122.5, 122.4, 28.5, 15.4. HRMS (ESI): m/z calcd for [C28H22Na]+: 381.1620; found: 381.1629. 9,10-Bis(4-tert-butylphenyl)phenanthrene (3aj): white solid; yield: 80 mg (60%); mp 279.9–281.0 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.2 Hz, 2 H), 7.71 (dd, J = 8.2, 0.9 Hz, 2 H), 7.63–7.67 (m, 2 H), 7.48–7.51 (m, 2 H), 7.17–7.20 (m, 4 H), 7.01–7.03 (m, 4 H), 1.27 (s, 18 H). 13C NMR (101 MHz, CDCl3): ­δ = 149.0, 137.6, 136.6, 132.0, 130.7, 129.9, 128.0, 126.5, 126.2, 124.1, 122.5, 34.4, 31.3. HRMS (ESI): m/z calcd for [C34H34Na]+: 465.2559; found: 465.2572. 9-Phenyl-10-(2-thienyl)phenanthrene (3am): yellow solid; yield: 64 mg (63%); mp 214.5–215.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 8.3 Hz, 2 H), 7.78–7.80 (m, 1 H), 7.65–7.70 (m, 2 H), 7.52–7.56 (m, 2 H), 7.46–7.50 (m, 1 H), 7.22–7.33 (m, 6 H), 6.92–6.95 (m, 1 H), 6.84–6.86 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 140.1, 139.9, 139.5, 132.5, 131.7, 130.7, 130.4, 129.9, 129.6, 129.2, 128.2, 127.6, 127.6, 126.9, 126.9, 126.8, 126.7, 126.6, 126.3, 126.0, 122.5, 122.4. HRMS (ESI): m/z calcd for [C24H16SNa]+: 359.0871; found: 359.0872. 4-(10-Phenylphenanthren-9-yl)pyridine (3ao): faint yellow solid; yield: 57 mg (57%); mp 235.8–236.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.75 (dd, J = 8.3, 4.9 Hz, 2 H), 8.42 (dd, J = 4.5, 1.4 Hz, 2 H), 7.60–7.65 (m, 2 H), 7.37–7.50 (m, 4 H), 7.16–7.22 (m, 3 H), 7.01–7.08 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 149.2, 148.2, 138.6, 137.3, 134.4, 131.5, 130.8, 130.5, 130.2, 128.1, 128.0, 127.9, 127.1, 127.1, 127.0, 127.0, 126.9, 126.8, 126.3, 122.8, 122.6. HRMS (ESI): m/z calcd for [C25H17NNa]+: 354.1259; found: 354.1265. 9-(p-Tolyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bb): faint yellow solid; yield: 60 mg (50%); mp 249.9–251.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (s, 2 H), 7.11–7.24 (m, 7 H), 7.00 (s, 4 H), 2.52 (s, 6 H), 2.31 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 140.3, 136.9, 135.9, 135.9, 135.5, 135.3, 135.3, 135.2, 131.2, 131.0, 130.3, 130.2, 128.2, 128.1, 128.1, 127.8, 127.7, 127.4, 126.1, 122.7, 29.7, 21.3, 20.4, 20.2, 20.2. HRMS (ESI): m/z calcd for [C31H28Na]+: 423.2089; found: 423.2089. 9-(3-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bc): faint yellow solid; yield: 42 mg (34%); mp 149.1–150.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.56 (s, 2 H), 7.37 (s, 1 H), 7.23–7.31 (m, 7 H), 6.72–6.82 (m, 3 H), 3.72 (s, 3 H), 2.58 (s, 6 H), 2.36 (d, J = 6.0 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 158.8, 141.4, 140.1, 135.7, 135.7, 135.4, 135.4, 135.3, 131.1, 131.1, 130.1, 129.9, 128.4, 128.1, 128.1, 127.8, 127.8, 127.6, 127.4, 126.3, 123.9, 122.7, 116.6, 112.2, 55.2, 21.6, 20.5, 20.2, 15.4. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2035. 9-(2-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bd): faint yellow solid; yield: 12 mg (10%); mp 203.5–204.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (d, J = 5.4 Hz, 2 H), 7.12–7.21 (m, 8 H), 7.01 (dd, J = 7.4, 1.7 Hz, 1 H), 6.82–6.84 (m, 1 H), 6.75 (d, J = 8.2 Hz, 1 H), 3.56 (s, 3 H), 2.53 (s, 3 H), 2.52 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 157.4, 140.4, 136.2, 135.3, 135.2, 135.1, 135.0, 132.6, 132.5, 130.9, 130.2, 130.1, 129.1, 128.3, 128.2, 128.1, 127.6, 127.3, 127.2, 127.1, 126.2, 122.7, 119.9, 110.3, 55.2, 20.5, 20.4, 20.2, 20.1. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2036.
  • 20 Dibenzochryenes 4aa and 4ab; General Procedure: A dried flask was charged with 9,10-disubstituted phenanthrene (0.4 mmol), CuCl2 (270 mg, 2.0 mmol) and AlCl3 (267 mg, 2.0 mmol) under argon, and CS2 (5 mL) was added by a syringe. The mixture was stirred at r.t. until the reaction was complete. The mixture was diluted with CH2Cl2 and filtered through a plug of silica gel. The solvents were then removed under reduced pressure to provide a crude product, which was further purified by silica gel column chromatography (silica gel, PE–EtOAc). Palladium-Catalyzed Annulation of 2,2′-Dibromobiphenyls with Alkynes; Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes: A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes was realized. The electron-deficient heteroaromatic-substituted acetylenes are capable of the annulation process. Thiophene-fused and pyridine-fused PAHs can also be synthesized easily. This methodology also provides a highly efficient and low-cost approach to dibenzochrysene derivatives starting from simple commercially available reactants in two steps.