Synlett 2015; 26(14): 1991-1996
DOI: 10.1055/s-0034-1378726
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Annulation of 2,2-Dibromobiphenyls with Alkynes: Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes

Authors

  • Jun Ma

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
  • Gaoqiang Li*

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
  • Yan Qiao

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
  • Jingxuan Tu

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
  • Sha Liu

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
  • Feng Xu*

    Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: gqli@snnu.edu.cn   Email: fengxu@snnu.edu.cn
Further Information

Publication History

Received: 20 March 2015

Accepted after revision: 10 May 2015

Publication Date:
15 July 2015 (online)


Graphical Abstract

Preview

Abstract

A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes has been realized. The methodology provides an efficient approach to dibenzochrysene derivatives starting from simple reactants in two steps.

Supporting Information

 
  • References and Notes

  • 2 Hepworth JD, Waring DR, Waring MJ. Basic Concepts in Chemistry: Aromatic Chemistry . John-Wiley & Sons; New York: 2003
  • 3 Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y. Nature (London) 2010; 464: 76
  • 4 Matsuo Y, Sato Y, Hashiguchi M, Matsuo K, Nakamura E. Adv. Funct. Mater. 2009; 19: 2224
  • 6 Machado AM, Munaro M, Martins TD, Davila LY. A, Giro R, Caldas MJ, Atvars TD. Z, Akcelrud LC. Macromolecules 2006; 39: 3398
  • 8 Tian H, Shi J, Dong S, Yan D, Wang L, Geng Y, Wang F. Chem. Commun. 2006; 3498
  • 9 He B, Tian H, Geng Y, Wang F, Müllen K. Org. Lett. 2008; 10: 773
  • 16 An W, Li G, Ma J, Tian Y, Xu F. Synlett 2014; 25: 1585
  • 19 9,10-Disubustituted Phenanthrenes 3aa–3bd; General Procedure: A Schlenk flask was charged with 2,2′-dibromobiphenyls (0.3 mmol), alkyne (0.33 mmol), Pd(PPh3)2Cl2 (11 mg, 5 mol%), Xantphos (10 mg, 5.5 mol%) and K2CO3 (124 mg, 0.9 mmol) under N2. Mesitylene (5 mL) was added from a syringe, and the mixture was stirred at 150 °C until the reaction was complete (TLC). The mixture was cooled to r.t., and H2O (10 mL) was added. The resulting mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried over anhyd Na2SO4, and concentrated to give a residue that was purified by column chromatography (silica gel, PE–EtOAc). 9-(3-Methoxyphenyl)-10-phenylphenanthrene (3ac): white solid; yield: 63 mg (58%); mp189.8–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.81 (d, J = 8.3 Hz, 2 H), 7.60–7.68 (m, 3 H), 7.54–7.57 (m, 1 H), 7.46–7.51 (m, 2 H), 7.26–7.29 (m, 1 H), 7.18–7.25 (m, 3 H), 7.13–7.16 (m, 2 H), 6.70–6.79 (m, 3 H), 3.68 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 158.9, 140.9, 139.5, 137.0, 137.0, 131.9, 131.7, 131.0, 131.0, 130.0, 130.0, 128.5, 127.9, 127.7, 127.6, 126.6, 126.6, 126.5, 126.4, 123.8, 122.5, 122.5, 116.6, 112.4, 55.2. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1418. 9-(2-Methoxyphenyl)-10-phenylphenanthrene (3ad): faint yellow solid; yield: 23 mg (21%); mp 198.9–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.71 (dd, J = 8.3, 4.0 Hz, 2 H), 7.53–7.58 (m, 2 H), 7.47–7.50 (m, 1 H), 7.36–7.41 (m, 3 H), 7.07–7.16 (m, 6 H), 6.93 (dd, J = 7.4, 1.7 Hz, 1 H), 6.68–6.77 (m, 2 H), 3.49 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 156.2, 138.8, 136.5, 133.0, 131.3, 131.0, 130.7, 129.7, 129.1, 128.9, 127.5, 127.5, 126.7, 126.4, 126.2, 125.6, 125.5, 125.4, 125.2, 125.2, 121.5, 121.5, 119.0, 109.3, 54.1. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1407. 9-(4-Fluorophenyl)-10-phenylphenanthrene (3ae): white solid; yield: 55 mg (53%); mp 256.8–257.9 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.4 Hz, 2 H), 7.64–7.68 (m, 2 H), 7.47–7.56 (m, 4 H), 7.20–7.26 (m, 3 H), 7.08–7.14 (m, 4 H), 6.90–6.95 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 162.8, 160.3, 139.5, 137.7, 136.1, 135.5, 132.6, 132.5, 131.8, 131.0, 130.1, 127.9, 127.7, 127.6, 126.7, 126.6, 126.6, 126.5, 122.6, 122.5, 114.7, 114.5. HRMS (ESI): m/z calcd for [C26H17FNa]+: 371.1212; found: 371.1225. 9-(4-Ethylphenyl)-10-phenylphenanthrene (3af): white solid; yield: 77 mg (72%); mp 163.3–164.5 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.3 Hz, 2 H), 7.54–7.67 (m, 4 H), 7.45–7.50 (m, 2 H), 7.18–7.26 (m, 3 H), 7.14–7.16 (m, 2 H), 7.05 (s, 4 H), 2.61 (q, J = 7.6 Hz, 2 H), 1.21 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.2, 141.6, 139.7, 137.3, 137.2, 136.7, 132.1, 132.0, 131.1, 130.9, 130.0, 129.0, 128.0, 127.8, 127.6, 127.2, 127.0, 126.6, 126.3, 126.3, 122.5, 122.4, 28.5, 15.4. HRMS (ESI): m/z calcd for [C28H22Na]+: 381.1620; found: 381.1629. 9,10-Bis(4-tert-butylphenyl)phenanthrene (3aj): white solid; yield: 80 mg (60%); mp 279.9–281.0 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.2 Hz, 2 H), 7.71 (dd, J = 8.2, 0.9 Hz, 2 H), 7.63–7.67 (m, 2 H), 7.48–7.51 (m, 2 H), 7.17–7.20 (m, 4 H), 7.01–7.03 (m, 4 H), 1.27 (s, 18 H). 13C NMR (101 MHz, CDCl3): ­δ = 149.0, 137.6, 136.6, 132.0, 130.7, 129.9, 128.0, 126.5, 126.2, 124.1, 122.5, 34.4, 31.3. HRMS (ESI): m/z calcd for [C34H34Na]+: 465.2559; found: 465.2572. 9-Phenyl-10-(2-thienyl)phenanthrene (3am): yellow solid; yield: 64 mg (63%); mp 214.5–215.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 8.3 Hz, 2 H), 7.78–7.80 (m, 1 H), 7.65–7.70 (m, 2 H), 7.52–7.56 (m, 2 H), 7.46–7.50 (m, 1 H), 7.22–7.33 (m, 6 H), 6.92–6.95 (m, 1 H), 6.84–6.86 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 140.1, 139.9, 139.5, 132.5, 131.7, 130.7, 130.4, 129.9, 129.6, 129.2, 128.2, 127.6, 127.6, 126.9, 126.9, 126.8, 126.7, 126.6, 126.3, 126.0, 122.5, 122.4. HRMS (ESI): m/z calcd for [C24H16SNa]+: 359.0871; found: 359.0872. 4-(10-Phenylphenanthren-9-yl)pyridine (3ao): faint yellow solid; yield: 57 mg (57%); mp 235.8–236.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.75 (dd, J = 8.3, 4.9 Hz, 2 H), 8.42 (dd, J = 4.5, 1.4 Hz, 2 H), 7.60–7.65 (m, 2 H), 7.37–7.50 (m, 4 H), 7.16–7.22 (m, 3 H), 7.01–7.08 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 149.2, 148.2, 138.6, 137.3, 134.4, 131.5, 130.8, 130.5, 130.2, 128.1, 128.0, 127.9, 127.1, 127.1, 127.0, 127.0, 126.9, 126.8, 126.3, 122.8, 122.6. HRMS (ESI): m/z calcd for [C25H17NNa]+: 354.1259; found: 354.1265. 9-(p-Tolyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bb): faint yellow solid; yield: 60 mg (50%); mp 249.9–251.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (s, 2 H), 7.11–7.24 (m, 7 H), 7.00 (s, 4 H), 2.52 (s, 6 H), 2.31 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 140.3, 136.9, 135.9, 135.9, 135.5, 135.3, 135.3, 135.2, 131.2, 131.0, 130.3, 130.2, 128.2, 128.1, 128.1, 127.8, 127.7, 127.4, 126.1, 122.7, 29.7, 21.3, 20.4, 20.2, 20.2. HRMS (ESI): m/z calcd for [C31H28Na]+: 423.2089; found: 423.2089. 9-(3-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bc): faint yellow solid; yield: 42 mg (34%); mp 149.1–150.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.56 (s, 2 H), 7.37 (s, 1 H), 7.23–7.31 (m, 7 H), 6.72–6.82 (m, 3 H), 3.72 (s, 3 H), 2.58 (s, 6 H), 2.36 (d, J = 6.0 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 158.8, 141.4, 140.1, 135.7, 135.7, 135.4, 135.4, 135.3, 131.1, 131.1, 130.1, 129.9, 128.4, 128.1, 128.1, 127.8, 127.8, 127.6, 127.4, 126.3, 123.9, 122.7, 116.6, 112.2, 55.2, 21.6, 20.5, 20.2, 15.4. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2035. 9-(2-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bd): faint yellow solid; yield: 12 mg (10%); mp 203.5–204.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (d, J = 5.4 Hz, 2 H), 7.12–7.21 (m, 8 H), 7.01 (dd, J = 7.4, 1.7 Hz, 1 H), 6.82–6.84 (m, 1 H), 6.75 (d, J = 8.2 Hz, 1 H), 3.56 (s, 3 H), 2.53 (s, 3 H), 2.52 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 157.4, 140.4, 136.2, 135.3, 135.2, 135.1, 135.0, 132.6, 132.5, 130.9, 130.2, 130.1, 129.1, 128.3, 128.2, 128.1, 127.6, 127.3, 127.2, 127.1, 126.2, 122.7, 119.9, 110.3, 55.2, 20.5, 20.4, 20.2, 20.1. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2036.
  • 20 Dibenzochryenes 4aa and 4ab; General Procedure: A dried flask was charged with 9,10-disubstituted phenanthrene (0.4 mmol), CuCl2 (270 mg, 2.0 mmol) and AlCl3 (267 mg, 2.0 mmol) under argon, and CS2 (5 mL) was added by a syringe. The mixture was stirred at r.t. until the reaction was complete. The mixture was diluted with CH2Cl2 and filtered through a plug of silica gel. The solvents were then removed under reduced pressure to provide a crude product, which was further purified by silica gel column chromatography (silica gel, PE–EtOAc). Palladium-Catalyzed Annulation of 2,2′-Dibromobiphenyls with Alkynes; Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes: A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes was realized. The electron-deficient heteroaromatic-substituted acetylenes are capable of the annulation process. Thiophene-fused and pyridine-fused PAHs can also be synthesized easily. This methodology also provides a highly efficient and low-cost approach to dibenzochrysene derivatives starting from simple commercially available reactants in two steps.