Synthesis 2014; 46(23): 3263-3267
DOI: 10.1055/s-0034-1378554
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 4-Halogenated 3-Fluoro-6-methoxyquinolines: Key Building Blocks for the Synthesis of Antibiotics

Thomas Flagstad
a   Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark   Fax: + 45(4593)3968   Email: ten@kemi.dtu.dk
,
Mette T. Petersen
a   Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark   Fax: + 45(4593)3968   Email: ten@kemi.dtu.dk
,
Daniel M. Hinnerfeldt
a   Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark   Fax: + 45(4593)3968   Email: ten@kemi.dtu.dk
,
Michael Givskov
b   Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
c   Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
,
Thomas E. Nielsen*
a   Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark   Fax: + 45(4593)3968   Email: ten@kemi.dtu.dk
c   Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
› Author Affiliations
Further Information

Publication History

Received: 11 June 2014

Accepted after revision: 07 July 2014

Publication Date:
28 August 2014 (online)


Abstract

A practical and scalable 4-step route is presented for the synthesis of 4-bromo-3-fluoro-6-methoxyoquinoline and 3-fluoro-4-iodo-6-methoxyoquinoline from readily available 2,4-dichloro-3-fluoroquinoline with an overall yield of 81–85%. Halogenated quinoline building blocks have found much use in antimicrobial drug discovery, and the method reported here would be useful for the synthesis of these compounds.

Supporting Information

 
  • References


    • For selected reviews on fluoroquinolones, see:
    • 1a Appelbaum PC, Hunter PA. Int. J. Antimicrob. Agents 2000; 16: 5
    • 1b Just PM. Pharmacotherapy 1993; 13: 4S
    • 1c Hooper DC, Wolfson JS. N. Engl. J. Med. 1991; 324: 384

      For selected articles on fluoroquinolines, see:
    • 2a Horchler CL, McCauley JP, Hall JE, Snyder DH, Moore WC, Hudzik TJ, Chapdelaine MJ. Bioorg. Med. Chem. 2007; 15: 939
    • 2b Hoeglund IP. J, Silver S, Engstroem MT, Salo H, Tauber A, Kyyroenen H.-K, Saarenketo P, Hoffren A.-M, Kokko K, Pohjanoksa K, Sallinen J, Savola J.-M, Wurster S, Kallatsa OA. J. Med. Chem. 2006; 49: 6351
    • 2c Takahashi K, Kamiya M, Sengoku Y, Kohda K, Kawazoe Y. Chem. Pharm. Bull. 1988; 36: 4630
    • 2d Kato T, Hakura A, Mizutani T, Saeki K. Mutat. Res. 2000; 465: 173
  • 3 Stein GE. Clin. Infect. Dis. 1996; 23 (Suppl. 1): S19
  • 4 Black MT, Stachyra T, Platel D, Girard A.-M, Claudon M, Bruneau J.-M, Miossec C. Antimicrob. Agents Chemother. 2008; 52: 3339
  • 5 Surivet J.-P, Zumbrunn C, Rueedi G, Hubschwerlen C, Bur D, Bruyère T, Locher H, Ritz D, Keck W, Seiler P, Kohl C, Gauvin J.-C, Mirre A, Kaegi V, Dos Santos M, Gaertner M, Delers J, Enderlin-Paput M, Boehme M. J. Med. Chem. 2013; 56: 7396
  • 6 Novexel Discontinues Development of NXL 101 . Novexel Press Release; Paris: 2008. June 3
  • 7 For a recent review, see: Mayer C, Janin YL. Chem. Rev. 2014; 114: 2313
    • 8a Bigot A, Mignani S, Ronan B, Tabart M, Viviani F. US Patent Appl. US 20050032800 A1, 2005 ; Chem. Abstr. 2005, 142, 219160
    • 8b Miller WH, Pendrak I, Seefeld MA. Patent PCT Int. Appl. WO 2006002047 A2, 2006 ; Chem. Abstr. 2006, 144, 108362
    • 8c Miller WH, Rouse MB, Seefeld MA. Patent PCT Int. Appl. WO 2006014580 A1, 2006 ; Chem. Abstr. 2006, 144, 212789
    • 8d Miller WH, Rouse MB, Seefeld MA. Patent PCT Int. Appl. WO 2006081289 A2, 2006 ; Chem. Abstr. 2006, 145, 188914
    • 8e Daines RA, Price AT. Patent PCT Int. Appl. WO 2007016610 A2, 2007 ; Chem. Abstr. 2007, 146, 229364
    • 8f Baque F, Carry J.-C, El-Ahmad Y, Evers M, Hubert P, Malleron J.-L, Mignani S, Pantel G, Tabart M, Viviani F. Patent PCT Int. Appl. WO 2002040474 A2 2002, 2002 ; Chem. Abstr. 2002, 136, 386033
    • 8g Fukuda Y, Kaelin DE. Jr, Singh SB. Patent PCT Int. Appl. WO 2013003383 A1, 2013 ; Chem. Abstr. 2013, 158, 158577.
  • 9 Li B, Zhang Z, Mangano M. Org. Process Res. Dev. 2008; 12: 1273
  • 10 Inspired by the selective Sonogashira coupling in the 2-position of 2,4-dichloroquinolines: Reddy EA, Islam A, Mukkanti K, Bandameedi V, Bhowmik DR, Pal M. Beilstein J. Org. Chem. 2009; 5: 32
  • 11 The desired intermediate, 4-chloro-3-fluoro-6-methoxy-quinoline (7), has also been preparred by fluorination of 4-chloro-6-methoxyquinoline in 31% yield (0.4 g), see ref. 8c
  • 12 Farhanullah Kim SY, Yoon EJ, Choi EC, Kim S, Kang T, Samrin F, Puri S, Lee J. Bioorg. Med. Chem. 2006; 14: 7154
    • 13a Rowlett RJ, Lutz RE. J. Am. Chem. Soc. 1946; 68: 1288
    • 13b Ohashi T, Oguro Y, Tanaka T, Shiokawa Z, Shibata S, Sato Y, Yamakawa H, Hattori H, Yamamoto Y, Kondo S, Miyamoto M, Tojo H, Baba A, Sasaki S. Bioorg. Med. Chem. 2012; 20: 5496
  • 14 Wolf C, Tumambac GE, Villalbos CN. Synlett 2003; 1801
  • 15 A reviewer noted that this transformation might require flame-dried NaI. However, in our hands the reaction proceeded in 95% yield using NaI from the shelf.