Synthesis 2014; 46(21): 2965-2975
DOI: 10.1055/s-0034-1378552
paper
© Georg Thieme Verlag Stuttgart · New York

Biscarboxy-Functionalized Imidazole and Palladium as Highly Active Catalytic System in Protic Solvents: Methanol and Water

Regina Martínez
Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: ipastor@ua.es   Email: yus@ua.es
,
Isidro M. Pastor*
Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: ipastor@ua.es   Email: yus@ua.es
,
Miguel Yus*
Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   Email: ipastor@ua.es   Email: yus@ua.es
› Author Affiliations
Further Information

Publication History

Received: 30 June 2014

Accepted: 07 July 2014

Publication Date:
11 August 2014 (online)


Abstract

The coupling reaction between aryl bromides and boron reagents is efficiently catalyzed by an in situ generated palladium complex obtained from palladium(II) acetate (0.1 mol%) and 1,3-bis(carboxymethyl)imidazole (0.2 mol%). The catalytic system is very active in protic solvents, especially in methanol. Biaryl derivatives have been prepared in good isolated yields (up to >99%), and additionally styrene and stilbene derivatives have also been prepared by means of this protocol.

Supporting Information

 
  • References

  • 1 Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 2a Crudden CM, Allen DP. Coord. Chem. Rev. 2004; 248: 2247
    • 2b Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
    • 2c Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
    • 2d Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
    • 2e Würtz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
    • 2f Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 2g Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
    • 2h Samojłowicz C, Bieniek M, Grela K. Chem. Rev. 2009; 109: 3708
    • 2i Nolan SP. Acc. Chem. Res. 2010; 44: 91
    • 2j Martin D, Melaimi M, Soleilhavoup M, Bertrand G. Organometallics 2011; 30: 5304
    • 2k Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
    • 2l Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 3a Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ. Chem. Rev. 2009; 109: 3859
    • 3b Cisnetti F, Gautier A. Angew. Chem. Int. Ed. 2013; 52: 11976
  • 4 Mercs L, Albrecht M. Chem. Soc. Rev. 2010; 39: 1903
  • 5 Fèvre M, Pinaud J, Gnanou Y, Vignolle J, Taton D. Chem. Soc. Rev. 2013; 42: 2142
    • 6a Brauer DJ, Kottsieper KW, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem. 2001; 630: 177
    • 6b Yang C, Lee HM, Nolan SP. Org. Lett. 2001; 3: 1511
    • 6c Bronger RP. J, Silva SM, Kamer PC. J, van Leeuwen PW. N. M. Chem. Commun. 2002; 3044
    • 6d Lee HM, Chiu PL, Zeng JY. Inorg. Chim. Acta 2004; 357: 4313
    • 7a Herrmann WA, Köcher C, Gooßen LJ, Artus GR. J. Chem. Eur. J. 1996; 2: 1627
    • 7b Arnold PL, Mungur SA, Blake AJ, Wilson C. Angew. Chem. Int. Ed. 2003; 42: 5981
    • 7c Bonnet LG, Douthwaite RE, Hodgson R, Houghton J, Kariuki BM, Simonovic S. Dalton Trans. 2004; 3528
    • 7d Spencer LP, Winston S, Fryzuk MD. Organometallics 2004; 23: 3372
    • 8a Schwarz J, Böhm VP. W, Gardiner MG, Grosche M, Herrmann WA, Hieringer W, Raudaschl-Sieber G. Chem. Eur. J. 2000; 6: 1773
    • 8b Glas H, Herdtweck E, Spiegler M, Pleier A.-K, Thiel WR. J. Organomet. Chem. 2001; 626: 100
    • 8c Prühs S, Lehmann CW, Fürstner A. Organometallics 2004; 23: 280
    • 8d Zarka MT, Bortenschlager M, Wurst K, Nuyken O, Weberskirch R. Organometallics 2004; 23: 4817
    • 8e Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ. J. Am. Chem. Soc. 2005; 127: 2285
    • 8f Arnold PL, Sanford MS, Pearson SM. J. Am. Chem. Soc. 2009; 131: 13912
    • 8g Benítez M, Mas-Marzá E, Mata JA, Peris E. Chem. Eur. J. 2011; 17: 10453
    • 8h Eguillor B, Esteruelas MA, García-Raboso J, Oliván M, Oñate E, Pastor IM, Peñafiel I, Yus M. Organometallics 2011; 30: 1658
    • 8i Meyer A, Unger Y, Poethig A, Strassner T. Organometallics 2011; 30: 2980
    • 8j Straubinger CS, Jokić NB, Högerl MP, Herdtweck E, Herrmann WA, Kühn FE. J. Organomet. Chem. 2011; 696: 687
  • 9 Fei Z, Zhao D, Geldbach TJ, Scopelliti R, Dyson PJ. Chem. Eur. J. 2004; 10: 4886
    • 10a Shi M, Qian H.-X. Appl. Organomet. Chem. 2005; 19: 1083
    • 10b Ray L, Katiyar V, Raihan MJ, Nanavati H, Shaikh MM, Ghosh P. Eur. J. Inorg. Chem. 2006; 3724
  • 11 Cole AC, Jensen JL, Ntai I, Tran KL. T, Weaver KJ, Forbes DC, Davis JH. J. Am. Chem. Soc. 2002; 124: 5962
  • 12 Meyer A, Taige MA, Strassner T. J. Organomet. Chem. 2009; 694: 1861
    • 13a Kratochvil B, Ondracek J, Velisek J, Hasek J. Acta Crystallogr., Sect. C 1988; 44: 1579
    • 13b Davídek T, Velísek J, Davídek J, Pech P. J. Agric. Food Chem. 1991; 39: 1374
  • 14 Kühl O, Palm G. Tetrahedron: Asymmetry 2010; 21: 393
  • 15 Velísek J, Davídek T, Davíek J, Trska P, Kvasnicka F, Velcová K. J. Food Sci. 1989; 54: 1544
  • 16 Chai X.-C, Sun Y.-Q, Lei R, Chen Y.-P, Zhang S, Cao Y.-N, Zhang H.-H. Cryst. Growth Des. 2009; 10: 658
  • 17 Fei Z, Geldbach TJ, Scopelliti R, Dyson PJ. Inorg. Chem. 2006; 45: 6331
  • 18 Wang X, Li X.-B, Yan R.-H, Wang Y.-Q, Gao E.-Q. Dalton Trans. 2013; 42: 10000
    • 19a Fei Z, Zhao D, Geldbach TJ, Scopelliti R, Dyson PJ, Antonijevic S, Bodenhausen G. Angew. Chem. Int. Ed. 2005; 44: 5720
    • 19b Fei Z, Ang WH, Geldbach TJ, Scopelliti R, Dyson PJ. Chem. Eur. J. 2006; 12: 4014
  • 20 Ma C, Li J, Peng J, Bai Y, Zhang G, Xiao W, Lai G. J. Organomet. Chem. 2013; 727: 28
    • 21a Alonso DA, Najera C In Science of Synthesis: Water in Organic Synthesis . Kobayashi S. Thieme; Stuttgart: 2012
    • 21b Deng C.-L, Guo S.-M, Xie Y.-X, Li J.-H. Eur. J. Org. Chem. 2007; 1457
    • 21c Mao S.-L, Sun Y, Yu G.-A, Zhao C, Han Z.-J, Yuan J, Zhu X, Yang Q, Liu S.-H. Org. Biomol. Chem. 2012; 10: 9410
    • 21d Liu C, Zhang Y, Liu N, Qiu J. Green Chem. 2012; 14: 2999
    • 21e Mondal M, Bora U. Green Chem. 2012; 14: 1873
    • 21f Zhou P, Wang H, Yang J, Tang J, Sun D, Tang W. RSC Adv. 2012; 2: 1759
    • 21g Liu C, Rao X, Zhang Y, Li X, Qiu J, Jin Z. Eur. J. Org. Chem. 2013; 4345
    • 21h Dewan A, Bora U, Borah G. Tetrahedron Lett. 2014; 55: 1689
    • 21i Mondal M, Bora U. Tetrahedron Lett. 2014; 55: 3038
    • 21j Liu L, Dong Y, Tang N. Green Chem. 2014; 16: 2185
  • 22 Lipshutz BH, Petersen TB, Abela AR. Org. Lett. 2008; 10: 1333
    • 23a Fleckenstein C, Roy S, Leuthäuber S, Plenio H. Chem. Commun. 2007; 2870
    • 23b Roy S, Plenio H. Adv. Synth. Catal. 2010; 352: 1014
    • 23c Godoy F, Segarra C, Poyatos M, Peris E. Organometallics 2011; 30: 684

      For palladium PEPPSI (pyridine enhanced precatalysts preparation, stabilization and initiation) complexes, see:
    • 24a Ref. 2l.
    • 24b Benhamou L, Besnard C, Kündig EP. Organometallics 2013; 33: 260
    • 24c Hoi KH, Coggan JA, Organ MG. Chem. Eur. J. 2013; 19: 843
    • 24d Valente C, Pompeo M, Sayah M, Organ MG. Org. Process Res. Dev. 2013; 18: 180
  • 25 Türkmen H, Can R, Çetinkaya B. Dalton Trans. 2009; 7039
  • 26 Liu N, Liu C, Jin Z. Green Chem. 2012; 14: 592
    • 27a Peñafiel I, Pastor IM, Yus M, Esteruelas MA, Oliván M, Oñate E. Eur. J. Org. Chem. 2011; 7174
    • 27b Peñafiel I, Pastor IM, Yus M. Eur. J. Org. Chem. 2012; 3151
    • 27c Peñafiel I, Pastor IM, Yus M. Eur. J. Org. Chem. 2013; 1479
  • 28 Peñafiel I, Pastor IM, Yus M, Esteruelas MA, Oliván M. Organometallics 2012; 31: 6154
  • 29 Amatore C, Le Duc G, Jutand A. Chem. Eur. J. 2013; 19: 10082
  • 30 Nishikata T, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 12103
  • 31 Lipshutz BH, Abela AR. Org. Lett. 2008; 10: 5329

    • A design of experiments approach was considered for the first optimization process:
    • 32a Chen JJ, Nugent TC, Lu CV, Kondapally S, Giannousis P, Wang Y, Wilmot JT. Org. Process Res. Dev. 2003; 7: 313
    • 32b Aggarwal VK, Staubitz AC, Owen M. Org. Process Res. Dev. 2006; 10: 64
    • 32c Veum L, Pereira SR. M, van der Waal JC, Hanefeld U. Eur. J. Org. Chem. 2006; 1664
    • 32d Denmark SE, Butler CR. J. Am. Chem. Soc. 2008; 130: 3690
    • 32e Kuethe JT, Tellers DM, Weissman SA, Yasuda N. Org. Process Res. Dev. 2009; 13: 471
    • 32f Mendiola J, García-Cerrada S, de Frutos Ó, de la Puente ML, Gu RL, Khau VV. Org. Process Res. Dev. 2009; 13: 292
    • 32g Massari L, Panelli L, Hughes M, Stazi F, Maton W, Westerduin P, Scaravelli F, Bacchi S. Org. Process Res. Dev. 2010; 14: 1364
    • 32h Mateos C, Mendiola J, Carpintero M, Mínguez JM. Org. Lett. 2010; 12: 4924
    • 32i Mathiessen B, Jensen AT. I, Zhuravlev F. Chem. Eur. J. 2011; 17: 7796
    • 32j Nishimura K, Kinugawa M. Org. Process Res. Dev. 2012; 16: 225
  • 33 For further details, see the Supporting Information.
    • 34a Molander GA, Ellis N. Acc. Chem. Res. 2007; 40: 275
    • 34b Molander GA, Canturk B. Angew. Chem. Int. Ed. 2009; 48: 9240
  • 35 Butters M, Harvey JN, Jover J, Lennox AJ. J, Lloyd-Jones GC, Murray PM. Angew. Chem. Int. Ed. 2010; 49: 5156
  • 36 During the optimization reaction, it was found that the reaction without ligand gave lower yields [see Figure 1 (c) and the Supporting Information]. In any case, under the optimal conditions described in Table 2 (for both types of boron reagents), in the absence of ligand 1, product 2 was obtained in a yield below 70% for the same reaction time.
    • 38a Foley P, DiCosimo R, Whitesides GM. J. Am. Chem. Soc. 1980; 102: 6713
    • 38b Whitesides GM, Hackett M, Brainard RL, Lavalleye JP. P. M, Sowinski AF, Izumi AN, Moore SS, Brown DW, Staudt EM. Organometallics 1985; 4: 1819
    • 38c Widegren JA, Bennett MA, Finke RG. J. Am. Chem. Soc. 2003; 125: 10301
    • 38d Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
    • 39a Alonso DA, Cívicos JF, Nájera C. Synlett 2009; 3011
    • 39b Desmartes C, Omar-Amrani R, Walcarius A, Lambert J, Champagne B, Fort Y, Schneider R. Tetrahedron 2008; 64: 372
    • 40a Alacid E, Nájera C. Org. Lett. 2008; 10: 5011
    • 40b Commercially available (Sigma-Aldrich).
  • 41 Grosse AV, Mavity JM, Ipatieff VN. J. Org. Chem. 1938; 3: 448
  • 42 Kuriyama M, Shimazawa R, Shirai R. Tetrahedron 2007; 63: 9393
  • 43 Molander GA, Iannazzo L. J. Org. Chem. 2011; 76: 9182
  • 44 Cho C.-H, Sun M, Seo Y.-S, Kim C.-B, Park K. J. Org. Chem. 2005; 70: 1482
  • 45 Lee HW, Lam FL, So CM, Lau CP, Chan AS. C, Kwong FY. Angew. Chem. Int. Ed. 2009; 48: 7436
  • 46 Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafir A, Vallribera A. Green Chem. 2010; 12: 150
  • 47 Walker SD, Barder TE, Martinelli JR, Buchwald SL. Angew. Chem. Int. Ed. 2004; 43: 1871
  • 48 Ackermann L, Gschrei CJ, Althammer A, Riederer M. Chem. Commun. 2006; 1419
  • 49 Song C, Ma Y, Chai Q, Ma C, Jiang W, Andrus MB. Tetrahedron 2005; 61: 7438
  • 50 Zhang Y, Shi H, Ke Y, Cao Y. J. Lumin. 2007; 124: 51
  • 51 Allan GM, Vicker N, Lawrence HR, Tutill HJ, Day JM, Huchet M, Ferrandis E, Reed MJ, Purohit A, Potter BV. L. Bioorg. Med. Chem. 2008; 16: 4438
  • 52 Kobayashi O, Uraguchi D, Yamakawa T. Org. Lett. 2009; 11: 2679
  • 53 Solodenko W, Mennecke K, Vogt C, Gruhl S, Kirschning A. Synthesis 2006; 1873
  • 54 Masllorens J, Moreno-Mañas M, Pla-Quintana A, Roglans A. Org. Lett. 2003; 5: 1559