Synlett 2014; 25(15): 2149-2254
DOI: 10.1055/s-0034-1378516
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Direct Allylation of Oxindoles with Simple Allylic Alcohols Enabled by Palladium/Brønsted Acid Catalysis

Huameng Yang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemistry Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Fax: +86(512)62872775   Email: gxjiang2012@sinano.ac.cn
,
Hui Zhou
b   Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Fax: Suzhou 215123   P. R. of China
c   Graduate University of Chinese Academy of Sciences, Beijing, P. R. of China
,
Hongyu Yin
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemistry Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Fax: +86(512)62872775   Email: gxjiang2012@sinano.ac.cn
,
Chungu Xia
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemistry Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Fax: +86(512)62872775   Email: gxjiang2012@sinano.ac.cn
,
Gaoxi Jiang*
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemistry Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Fax: +86(512)62872775   Email: gxjiang2012@sinano.ac.cn
b   Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Fax: Suzhou 215123   P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 19 May 2014

Accepted after revision: 16 June 2014

Publication Date:
25 August 2014 (online)


Abstract

A highly efficient and practical direct allylic alkylation of oxindoles with simple allylic alcohols cocatalyzed by Pd(OAc)2/Ph3P and PhCO2H under mild conditions has been developed, which streamlines the installation of an all-carbon quaternary allylic center at the oxindole 3-position. Enantioselective allylic alkylation has also been realized with the product in almost quantitative yield and 17% enantiomeric excess. Mechanistically, ESI analysis indicates that a palladium(0) species and π-allyl-Pd(PPh3)2 cation were involved.

 
  • References and Notes

    • 1a Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
    • 1b Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
    • 1c Trost BM, Dietsch TJ. J. Am. Chem. Soc. 1973; 95: 8200
    • 1d Tsuji J. Transition Metal Reagents and Catalysts. Wiley; New York: 2000
    • 1e Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 1f Kazmaier U. Curr. Org. Chem. 2003; 7: 317
    • 1g Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010; 1: 427
    • 1h Zhang W, Liu D. In Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications . Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim, 2010: Chap. 14

      For recent selected advances, see:
    • 2a Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
    • 2b Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 2c Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 2d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258 ; Angew. Chem. 2008, 120, 264
    • 2e Norsikian S, Chang C.-W. Curr. Org. Synth. 2009; 6: 264
    • 2f Montserrat D, Oscar P. Acc. Chem. Res. 2010; 43: 312
    • 2g Chen J.-P, Ding C.-H, Liu W, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
    • 2h Trost BM, Miller JR, Hoffman CM. Jr. J. Am. Chem. Soc. 2011; 133: 8165
    • 2i Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354
    • 2j Chen J.-P, Peng Q, Lei B.-L, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 14180
    • 2k Cao Z, Liu Y, Liu Z, Feng X, Zhuang M, Du H. Org. Lett. 2011; 13: 2164
    • 2l Trost BM. Org. Process. Res. Dev. 2012; 16: 185
    • 2m Bartlett MJ, Turner CA, Harvey JE. Org. Lett. 2013; 15: 2430
    • 2n Yu Y, Yang X.-F, Xu C.-F, Ding C.-H, Hou X.-L. Org. Lett. 2013; 15: 3880
    • 2o Liu W.-B, Reeves CM, Virgil SC, Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10626
    • 2p Trost BM. Topics in Organometallic Chemistry . Vol. 44. Gooßen L. Springer; Berlin: 2013: 1
    • 2q Quan M, Butt N, Shen J, Shen K, Liu D, Zhang W. Org. Biomol. Chem. 2013; 11: 7412
    • 2r Huo X, Quan M, Yang G, Zhao X, Liu D, Liu Y, Zhang W. Org. Lett. 2014; 16: 1570
    • 2s Butt N, Liu D, Zhang W. Synlett 2014; 25: 615
    • 2t Garcia MA, Frey W, Peters R. Organometallics 2014; 33: 1068
    • 3a Trost BM. Science 1991; 254: 1471
    • 3b Sheldon RA. Green Chem. 2008; 10: 359
    • 3c Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 4a Brannock KC. J. Am. Chem. Soc. 1959; 81: 3379
    • 4b Magnus PD, Nobbs MS. Synth. Commun. 1980; 10: 273
    • 5a Lu X, Lu L, Sun J. J. Mol. Catal. 1987; 41: 245
    • 5b Lu X, Jiang X, Tao X. J. Organomet. Chem. 1988; 344: 109
    • 5c Matsubara R, Masuda K, Nakano J, Kobayashi S. Chem. Commun. 2010; 46: 8662
    • 6a Masuyama Y, Tsunoda T, Kurusu Y. Chem. Lett. 1989; 9: 1647
    • 6b Takahara JP, Masuyama Y, Kurusu Y. J. Am. Chem. Soc. 1992; 114: 2577
    • 6c Masuyama Y, Kagawa M, Kurusu Y. Chem. Lett. 1995; 12: 1120
    • 6d Carde L, Llebaria A, Delgado A. Tetrahedron Lett. 2001; 42: 3299
    • 7a Itoh K, Hamaguchi N, Miura M, Nomura M. J. Chem. Soc., Perkin Trans. 1 1992; 2833
    • 7b Satoh T, Ikeda M, Miura M, Nomura M. J. Org. Chem. 1997; 62: 4877
    • 7c Yang S.-C, Huang C.-W. J. Org. Chem. 1999; 64: 5000
    • 7d Yang S.-C, Tsai Y.-C. Organometallics 2001; 20: 763
    • 7e Li Y.-X, Xu Q.-Q, Li L, Wang D, Chen Y.-J, Li C.-J. J. Am. Chem. Soc. 2013; 135: 12536
    • 8a Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
    • 8b Chandrasekhar S, Jagadeshwar V, Saritha B, Narsihmulu C. J. Org. Chem. 2005; 70: 6506
    • 8c Trost BM, Quancard J. J. Am. Chem. Soc. 2006; 128: 6314
    • 8d Tamaru Y, Kimura M. Pure Appl. Chem. 2008; 80: 979
    • 8e Kimura M, Tamaru Y. Mini-Rev. Org. Chem. 2009; 6: 392
    • 9a Kadota I, Shibuya A, Gyoung YS, Yamamoto Y. J. Am. Chem. Soc. 1998; 120: 10262
    • 9b Patil NT, Yamamoto Y. Tetrahedron Lett. 2004; 45: 3101
  • 10 Manabe K, Kobayashi S. Org. Lett. 2003; 5: 3241
    • 11a Jiang G, List B. Adv. Synth. Catal. 2011; 353: 1667
    • 11b Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
    • 12a Banerjee D, Jagadeesh RV, Junge K, Junge H, Beller M. Angew. Chem. Int. Ed. 2012; 51: 11556 ; Angew. Chem. 2012, 124, 11724
    • 12b Liu Q, Wu L, Jiao X, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 8064 ; Angew. Chem. 2013, 125, 8222
    • 13a Tao Z.-L, Zhang W.-Q, Chen D.-F, Adele A, Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255

    • Another recent notable example for the direct allylation of α-branched aromatic aldehydes with allylic alcohols catalyzed by dual-catalytic strategy, see:
    • 13b Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
  • 14 Franckevičius V, Cuthbertson JD, Pickworth M, Pugh DS, Taylor RJ. K. Org. Lett. 2011; 13: 4264
    • 15a Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
    • 15b Anthoni U, Christophersen C, Nielsen PH. Alkaloids: Chemical and Biological Perspectives . Vol. 13. Pelletier SW. Wiley; New York: 1999: 163
    • 15c Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 15d Nicolaou KC, Rao PB, Hao JL, Reddy MV, Rassias G, Huang XH, Chen DY. K, Snyder SA. Angew. Chem. Int. Ed. 2003; 42: 1753 ; Angew. Chem. 2003, 115, 1795
    • 15e Crich D, Banerjee A. Acc. Chem. Res. 2007; 40: 151
    • 16a Lee S, Hartwig JF. J. Org. Chem. 2001; 66: 3402
    • 16b Glorius F, Altenhoff G, Goddard R, Lehmann C. Chem. Commun. 2002; 2704
    • 16c Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 16d Dounay AB, Hatanaka K, Kodanko JJ, Oestreich M, Overman LE, Pfeifer LA, Weiss MM. J. Am. Chem. Soc. 2003; 125: 6261
    • 16e Arao T, Kondo K, Aoyama T. Chem. Pharm. Bull. 2006; 54: 1743
    • 16f Steven A, Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
    • 16g Kündig EP, Seidel TM, Jia Y, Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
    • 16h Luan X, Mariz R, Robert C, Gatti M, Blumentritt S, Linden A, Dorta R. Org. Lett. 2008; 10: 5569
    • 16i Würtz S, Lohre C, Fröhlich R, Bergander K, Glorius F. J. Am. Chem. Soc. 2009; 131: 8344
    • 16j Taylor AM, Altman RA, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 9900
    • 16k Luan X, Wu L, Drinkel E, Mariz R, Gatti M, Dorta R. Org. Lett. 2010; 12: 1912
    • 16l Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 16m Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 17a Trost BM, Frederiksen MU. Angew. Chem. Int. Ed. 2005; 44: 308
    • 17b Trost BM, Zhang Y. J. Am. Chem. Soc. 2006; 128: 4590
    • 17c Trost BM, Zhang Y. J. Am. Chem. Soc. 2007; 129: 14548
    • 17d Trost BM, Masters JT, Burns AC. Angew. Chem. Int. Ed. 2013; 52: 2260
    • 18a Komatsu Y, Sakamoto T, Kitazume T. J. Org. Chem. 1999; 64: 8369
    • 18b Faller JW, Sarantopoulos N. Organometallics 2004; 23: 2179
    • 18c Milheiro SC, Faller JW. J. Organomet. Chem. 2011; 696: 879
    • 19a Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 936
    • 19b Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
    • 19c Wang X, Guo P, Wang X, Wang Z, Ding K. Adv. Synth. Catal. 2013; 355: 2900
    • 19d Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
    • 19e Wang X, Guo P, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
  • 20 Johanna ML, Kálmán JS. J. Am. Chem. Soc. 2013; 135: 443
  • 21 Typical Procedure To a flame-dried Schlenk tube charged with 4 Å MS (50 mg/0.1 mmol) and a magnetic stir bar was added 3-aryloxindoles 1 (0.1 mmol), allylic alcohol 2 (0.2 mmol), Pd(OAc)2 (3.0–10 mol%), Ph3P (3.0–10 mol%), and PhCOOH (3.0–10 mol%) in dry toluene (0.5 mL). The resulting suspension was stirred at the specified temperature under argon for 12 h. Upon completion of the reaction (monitored by TLC), the reaction mixture was diluted with EtOAc and then quenched with sat. aq NH4Cl. The aqueous layer was extracted with EtOAc. The combined organic layers were dried (MgSO4), filtered, concentrated in vacuo, and purified by flash chromatography to afford pure products 3. tert-Butyl 3-Allyl-2-oxo-3-o-tolylindoline-1-carboxylate (3b) 1H NMR (400 MHz, CDCl3): δ = 1.61 (s, 9 H), 2.31 (s, 3 H), 3.02 (m, 2 H), 4.97 (m, 2 H), 5.42 (m, 1 H), 7.12 (m, 2 H), 7.22 (m, 3 H), 7.36 (m, 1 H), 7.91 (d, J = 8.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 21.31, 28.25, 28.84, 42.59, 55.92, 88.26, 115.04, 119.79, 125.71, 127.68, 128.71, 129.09, 130.58, 134.12, 137.66, 139.64, 149.46, 176.55. HRMS (EI): m/z calcd for C23H25NNaO3 [M + Na]+: 386.1729; found: 386.1727. tert-Butyl 3-Allyl-3-(2-methoxyphenyl)-2-oxoindoline-1-carboxylate (3c) 1H NMR (400 MHz, CDCl3): δ = 1.65 (s, 9 H), 3.01 (m, 2 H), 3.46 (s, 3 H), 4.97 (m, 2 H), 5.40 (m, 1 H), 6.78 (m, 2 H), 7.04 (m, 3 H), 7.23 (m, 1 H), 7.51 (m, 1 H), 7.81 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 21.31, 28.25, 28.84, 42.59, 55.92, 88.26, 115.04, 119.79, 125.71, 127.68, 128.71, 129.09, 130.58, 134.12, 137.66, 139.64, 149.46, 176.55. HRMS (EI): m/z calcd for C23H25NNaO4 [M + Na]+: 402.1667; found: 402.1676. tert-Butyl 3-Allyl-2-oxo-3-m-tolylindoline-1-carboxylate (3d) 1H NMR (400 MHz, CDCl3): δ = 1.61 (s, 9 H), 2.31, (s, 3 H), 3.01 (m, 1 H), 3.11 (m, 1 H), 5.02 (m, 2 H), 5.40 (m, 1 H), 7.06 (m, 2 H), 7.21 (m, 4 H), 7.34 (m, 1 H), 7.93 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 21.56, 21.61, 27.96, 28.09, 28.16, 42.55, 56.61, 84.27, 115.09, 119.70, 124.25, 124.32, 125.16, 127.86, 128.39, 130.53, 131.95, 138.24, 139.18, 139.83, 149.28, 176.33. HRMS (EI): m/z calcd for C20H21NNaO3 [M + Na]+: 346.1408; found: 346.1414.