Synlett 2014; 25(16): 2271-2274
DOI: 10.1055/s-0034-1378362
cluster
© Georg Thieme Verlag Stuttgart · New York

1,4-Diazabicyclo[2.2.2]octane-Mediated Ring Opening of 1-Acetylcyclopropanecarboxamides and Its Application to the Construction of 3-Alkylated γ-Lactams

Ling Li
a  Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Fax: +86(431)85099759   Email: liangfs112@nenu.edu.cn
,
Enxiang Wei
a  Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Fax: +86(431)85099759   Email: liangfs112@nenu.edu.cn
,
Shaoxia Lin
a  Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Fax: +86(431)85099759   Email: liangfs112@nenu.edu.cn
,
Bing Liu
a  Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Fax: +86(431)85099759   Email: liangfs112@nenu.edu.cn
,
Fushun Liang*
a  Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Fax: +86(431)85099759   Email: liangfs112@nenu.edu.cn
b  Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 10 May 2014

Accepted after revision: 09 June 2014

Publication Date:
28 July 2014 (online)


Abstract

1,4-Diazabicyclo[2.2.2]octane (DABCO)-mediated ring opening of 1-acetylcyclopropanecarboxamides efficiently gave stable zwitterions that could be formed in situ or readily isolated. An application of this novel type of ring opening was demonstrated in a one-pot efficient construction of biologically interesting 3-alkyl γ-lactams. The Lewis-base protocol provides an opportunity for performing ring opening, cycloaddition, and rearrangement reactions of donor–acceptor cyclopropanes through organocatalysis.

Supporting Information

 
  • References and Notes


    • For reviews on cyclopropane chemistry, see:
    • 1a Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 1b Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 1c Shi M, Lu J.-M, Wei Y, Shao L.-X. Acc. Chem. Res. 2012; 45: 641
    • 1d Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 1e De Simone F, Waser J. Synthesis 2009; 3353
    • 1f Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 1g Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 1h Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 1i Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
    • 1j Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165

      For selected recent papers on Lewis acid catalyzed ring opening of cyclopropanes, see:
    • 2a Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
    • 2b de Nanteuil F, Serrano E, Perrotta D, Waser J. J. Am. Chem. Soc. 2014; 136: 6239
    • 2c Novikov RA, Balakirev DO, Timofeev VP, Tomilov YV. Organometallics 2012; 31: 8627
    • 2d Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 2e Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
    • 2f Rivero AR, Fernández I, Sierra MÁ. Org. Lett. 2013; 15: 4928
    • 2g Xiong H, Xu H, Liao S, Xie Z, Tang Y. J. Am. Chem. Soc. 2013; 135: 7851

      For Lewis base mediated ring-opening of cyclopropanes, see:
    • 3a Danishefsky S, Singh RK. J. Am. Chem. Soc. 1975; 97: 3239
    • 3b Budynina EM, Ivanova OA, Averina EB, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2006; 47: 647
    • 3c In their research, Wang and co-workers proposed nucleophilic addition of DABCO as a mechanism for cyclopropane ring opening, see: Du D, Wang Z. Tetrahedron Lett. 2008; 49: 956

      For work from our group on activated cyclopropanes under basic conditions, see:
    • 4a Li M, Lin S, Dong Z, Zhang X, Liang F, Zhang J. Org. Lett. 2013; 15: 3978
    • 4b Lin S, Wei Y, Liang F, Zhao B, Liu Y, Liu P. Org. Biomol. Chem. 2012; 10: 4571
    • 4c Liang F, Lin S, Wei Y. J. Am. Chem. Soc. 2011; 133: 1781
    • 4d Liang F, Cheng X, Liu J, Liu Q. Chem. Commun. 2009; 3636

    • Under acidic conditions, see:
    • 4e Wei Y, Lin S, Xue H, Liang F, Zhao B. Org. Lett. 2012; 14: 712
    • 4f Wei Y, Lin S, Zhang J, Niu Z, Fu Q, Liang F. Chem. Commun. 2011; 47: 12394
    • 4g Wei E, Liu B, Lin S, Zhao B, Liang F. Org. Biomol. Chem. 2013; 11: 7212

      For reviews on organocatalysis, see:
    • 5a MacMillan DW. C. Nature 2008; 455: 304
    • 5b Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 1360
    • 5c Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 5d Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 5e Cheong PH.-Y, Legault CY, Um JM, Çelebi-Ölçüm N, Houk KN. Chem. Rev. 2011; 111: 5042
    • 5f Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 5g Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390

      Zwitterions are widely used in organic synthesis; see:
    • 6a Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
    • 6b Nair V, Menon RS, Sreekanth AR, Abhilash N, Biju AT. Acc. Chem. Res. 2006; 39: 520
    • 6c Nair V, Biju AT, Vinod AU, Suresh E. Org. Lett. 2005; 7: 5139
    • 6d Nair V, Deepthi A, Poonoth M, Santhamma B, Vellalath S, Babu BP, Mohan R, Suresh E. J. Org. Chem. 2006; 71: 2313
    • 7a Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. J. Antibiot. 1991; 44: 113
    • 7b Omura S, Matsuzaki K, Fujimoto T, Kosuge K, Furuya T, Fujita S, Nakagawa A. J. Antibiot. 1991; 44: 117
    • 7c Barrett AG. M, Head J, Smith ML, Stock NS, White AJ. P, Williams DJ. J. Org. Chem. 1999; 64: 6005
    • 7d Schwartz RE, Helms GL, Bolessa EA, Wilson KE, Giacobbe RA, Tkacz JS, Bills GF, Liesch JM, Zink DL, Curotto JE, Pramanik B, Onishi JC. Tetrahedron 1994; 50: 1675
    • 7e Hiemstra H, Fortgens HP, Speckamp WN. Tetrahedron Lett. 1984; 25: 3115
    • 7f Castelhano AL, Krantz A. J. Am. Chem. Soc. 1984; 106: 1877
  • 8 (2Z)-3-(Anilinocarbonyl)-5-(4-aza-1-azoniabicyclo-[2.2.2]oct-1-yl)pent-2-en-2-olate (2a); Typical Procedure DABCO (156 mg, 1.05 equiv) was added to a solution of cyclopropane 1a (102 mg, 0.5 mmol) in H2O (1.0 mL), and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to r.t., and H2O was removed under reduced pressure to give a white solid. The crude product was washed with MeOH and EtOAc (×3), and dried under ambient conditions to give a white solid; yield: 150 mg (95%); mp 173–175 °C; 1H NMR (500 MHz, D2O): δ = 1.75–1.76 (d, J = 7.5 Hz, 3 H), 2.32–2.35 (t, J = 8.0 Hz, 2 H), 2.72–2.75 (t, J = 8.5 Hz, 2 H), 2.79–2.80 (d, J = 6.5 Hz, 6 H), 3.01–3.02 (d, J = 6.5 Hz, 6 H), 6.83–6.86 (t, J = 7.0 Hz, 1 H), 7.11–7.14 (t, J = 8.0 Hz, 2 H), 7.25–7.26 (d, J = 8.0 Hz, 2 H); 13C NMR (125 MHz, D2O): δ = 20.4, 24.1, 44.2, 51.8, 63.7, 93.2, 119.9, 123.1, 129.5, 139.6, 170.0, 181.4; HRMS (ESI-TOF): m/z [M + H] calcd for C18H26N3O2: 316.2025; found: 316.2021.
  • 9 The reason for this is still unclear.
    • 10a Liu X, Zhang N, Yang J, Liang Y, Zhang R, Dong D. J. Org. Chem. 2013; 78: 3323
    • 10b Wang Z, Bi X, Liao P, Zhang R, Liang Y, Dong D. Chem. Commun. 2012; 48: 7076
    • 10c Zhang Z, Zhang Q, Sun S, Xiong T, Liu Q. Angew. Chem. Int. Ed. 2007; 46: 1726
    • 10d del Mar Sanchez Duque M, Baslé O, Isambert N, Gaudel-Siri A, Génisson Y, Plaquevent J.-C, Rodriguez J, Constantieux T. Org. Lett. 2011; 13: 3296
  • 11 3-Acetyl-3-methyl-1-phenylpyrrolidin-2-one (3a); Typical Procedure DABCO (156 mg, 1.05 equiv) was added to a solution of cyclopropane 1a (102 mg, 0.5 mmol) in MeCN (1.0 mL), and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to r.t., and MeCN was removed under reduced pressure. A solution of MeI (0.047mL, 1.5 equiv) in DMF (2.0 mL) was added, and the mixture was stirred at r.t. for 30 min. Finally, NaOH (240 mg, 1.2 equiv) was added, and the mixture was stirred for 30 min. The mixture was poured into brine (10 mL) and extracted with EtOAc (3 × 10 mL). The organic phases were combined, washed with H2O (3 × 10 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (PE–Et2O) to give colorless crystals; yield: 94.5 mg (87%); mp 86–88 °C; 1H NMR (500 MHz, CDCl3): δ = 1.55 (s, 3 H), 1.84–1.90 (m, 1 H), 2.33 (s, 3 H), 2.81–2.85 (m, 1 H), 3.71–3.75 (m, 1 H), 3.75–3.87 (m, 1 H), 7.16 (t, J = 7.0 Hz, 1 H), 7.49 (t, J = 7.5 Hz, 2 H), 7.63 (t, J = 7.5 Hz, 2 H); 13C NMR (125 MHz, CDCl3): δ = 21.2, 26.0, 28.6, 45.8, 59.6, 119.8, 124.9, 128.8, 139.1, 172.4, 205.8; HRMS (ESI-TOF): m/z [M + H] calcd for C13H16NO2: 218.1181; found: 218.1192.

    • Deacetylation is quite common in the reactions of β-dicarbonyl compounds under either acidic or basic conditions; for selected examples, see:
    • 12a Katritzky AR, Wang Z, Wang M, Wilkerson CR, Hall CD, Akhmedov NG. J. Org. Chem. 2004; 69: 6617
    • 12b Iaroshenko VO, Abbasi MS. A, Villinger A, Langer P. Adv. Synth. Catal. 2012; 354: 803
    • 12c He C, Guo S, Huang L, Lei A. J. Am. Chem. Soc. 2010; 132: 8273