Synlett 2014; 25(12): 1701-1704
DOI: 10.1055/s-0034-1378278
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric, Organocatalytic Bromolactonization of Allenoic Acids

Michael Wilking
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany   Fax: +49(251)8336523   Email: ulrich.hennecke@uni-muenster.de
,
Constantin G. Daniliuc
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany   Fax: +49(251)8336523   Email: ulrich.hennecke@uni-muenster.de
,
Ulrich Hennecke*
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany   Fax: +49(251)8336523   Email: ulrich.hennecke@uni-muenster.de
› Author Affiliations
Further Information

Publication History

Received: 04 April 2014

Accepted after revision: 12 May 2014

Publication Date:
24 June 2014 (online)


Abstract

Asymmetric, reagent-controlled bromolactonizations of allenoic acids have been achieved by using (DHQD)2PHAL as catalyst. A range of substrates can be cyclized in good yields and moderate to good enantioselectivities under operationally simple conditions.

Supporting Information

 
  • References and Notes

    • 1a Snyder SA, Treitler DS, Brucks AP. Aldrichimica Acta 2011; 44: 27
    • 1b Hennecke U, Wald T, Rösner C, Robert T, Oestreich M. Oxidation In Comprehensive Organic Synthesis . Molander GA, Knochel P. Elsevier; Oxford: 2014. 2nd Ed., Vol. 7 638
    • 1c Nolsøe JM. J, Hansen TV. Eur. J. Org. Chem. 2014; 3051
    • 2a Castellanos A, Fletcher SP. Chem. Eur. J. 2011; 17: 5766
    • 2b Tan CK, Zhou L, Yeung Y.-Y. Synlett 2011; 1335
    • 2c Hennecke U. Chem. Asian J. 2012; 7: 456
    • 2d Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 2e Murai K, Fujioka H. Heterocycles 2013; 87: 763
    • 2f Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
    • 2g Tripathi CB, Mukherjee S. Synlett 2014; 25: 163

      Selected examples:
    • 3a Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298
    • 3b Zhou L, Tan CK, Jiang X, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
    • 3c Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174
    • 3d Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
    • 3e Yousefi R, Whitehead DC, Mueller JM, Staples RJ, Borhan B. Org. Lett. 2011; 13: 608
    • 3f Tungen JE, Nolsøe JM. J, Hansen TV. Org. Lett. 2012; 14: 5884
    • 3g Ikeuchi K, Ido S, Yoshimura S, Asakawa T, Inai M, Hamashima Y, Kan T. Org. Lett. 2012; 14: 6016
    • 3h Dobish MC, Johnston JN. J. Am. Chem. Soc. 2012; 134: 6068
    • 3i Paull DH, Fang C, Donald JR, Pansick AD, Martin SF. J. Am. Chem. Soc. 2012; 134: 11128
    • 4a Hennecke U, Müller CH, Fröhlich R. Org. Lett. 2011; 13: 860
    • 4b Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Org. Lett. 2011; 13: 6350
    • 4c Denmark SE, Burk MT. Org. Lett. 2012; 14: 256
    • 4d Zeng X, Miao C, Wang S, Xia C, Sun W. Chem. Commun. 2013; 49: 2418

      Selected examples:
    • 5a Zhou L, Chen J, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2011; 133: 9164
    • 5b Chen J, Zhou L, Yeung Y.-Y. Org. Biomol. Chem. 2012; 10: 3808
    • 5c Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
    • 5d Zhou L, Tay DW, Chen J, Leung GY. C, Yeung Y.-Y. Chem. Commun. 2013; 49: 4412
    • 5e Brindle CS, Yeung CS, Jacobsen EN. Chem. Sci. 2013; 4: 2100
    • 6a Lozano O, Blessley G, Martinez del Campo T, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew. Chem. 2011; 123: 8255
    • 6b Rauniyar V, Lackner AD, Hamilton GL, Toste FD. Science 2011; 334: 1681
    • 6c Jaganathan A, Garzan A, Whitehead DC, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2011; 50: 2593
    • 6d Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
    • 6e Huang D, Liu X, Li L, Cai Y, Liu W, Shi Y. J. Am. Chem. Soc. 2013; 135: 8101
    • 6f Shunatona HP, Früh N, Wang Y.-M, Rauniyar V, Toste FD. Angew. Chem. Int. Ed. 2013; 52: 7724
    • 6g Garzan A, Jaganathan A, Marzijarani NS, Yousefi R, Whitehead DC, Jackson JE, Borhan B. Chem. Eur. J. 2013; 19: 9015
    • 6h Yin Q, You S.-L. Org. Lett. 2013; 15: 4266
    • 6i Tripathi CB, Mukherjee S. Angew. Chem. Int. Ed. 2013; 52: 8450
    • 7a Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J. Am. Chem. Soc. 2010; 132: 3664
    • 7b Zhang W, Liu N, Schienebeck CM, Decloux K, Zheng S, Werness JB, Tang W. Chem. Eur. J. 2012; 18: 7296
  • 8 Wilking M, Mück-Lichtenfeld C, Daniliuc CG, Hennecke U. J. Am. Chem. Soc. 2013; 135: 8133

    • Selected reviews:
    • 9a Ma S. Acc. Chem. Res. 2009; 42: 1679
    • 9b Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074

    • For selected halocyclizations of allenes, see:
    • 9c Catrin Jonasson C, Horváth A, Bäckvall J.-E. J. Am. Chem. Soc. 2000; 122: 9600
    • 9d Cui H, Chai Z, Zhao G. Chin. J. Chem. 2009; 27: 189
    • 10a Jiang X, Fu C, Ma S. Chem. Eur. J. 2008; 14: 9656
    • 10b Zhang X, Fu C, Yu Y, Ma S. Chem. Eur. J. 2012; 18: 13501
  • 11 Miles DH, Veguillas M, Toste FD. Chem. Sci. 2013; 4: 3427
  • 12 Hennecke U, Wilking M. Synlett 2014; DOI: 10.1055/s-0033-1341160
  • 13 CCDC-992322 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 14 A more extensive table of reaction conditions can be found in the Supporting Information.
  • 15 Armstrong A, Braddock DC, Jones AX, Clark S. Tetrahedron Lett. 2013; 54: 7004
  • 16 Enantioselective Halolactonization using 1,3-Dibromo-5,5-dimethylhydantoin (DBDMH); General Procedure (Conditions A): In a flame-dried Schlenk tube, the corresponding carboxylic acid (0.300 mmol, 1.0 equiv), benzoic acid (36.6 mg, 0.300 mmol, 1.0 equiv) and (DHQD)2PHAL (23.4 mg. 30.0 μmol, 10 mol%) were dissolved in anhydrous CHCl3/n-hexane (1:1, 6 mL), cooled to –30 °C and stirred for 15 min. DBDMH (103 mg, 0.360 mmol, 1.2 equiv) was added and stirring was continued at that temperature for 15 h. Sat. aq Na2S2O3 (6 mL) was added to the reaction mixture and the aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over Na2SO4, filtered, and the solvents were removed in vacuo. Purification by flash chromatography afforded the desired cyclization product.
  • 17 The isolated yield of 5b was surprisingly low because full conversion of the starting material was observed and no detectable side products were formed (6-endo cyclization product was not formed). The reason for the low mass balance is unclear. Similar observations were made for 5d and 5e.
  • 18 Enantioselective Halolactonization using N-Bromosuccinimide (NBS; General Procedure (Conditions B): In a flame-dried Schlenk tube, the corresponding carboxylic acid (0.300 mmol, 1.0 equiv) and (DHQD)2PHAL (23.4 mg. 30.0 μmol, 10 mol%) were dissolved in anhydrous CHCl3/n hexane (1:1, 6 mL), cooled to –30 °C and stirred for 15 min. NBS (64.1 mg, 0.360 mmol, 1.2 equiv) was added and stirring was continued at that temperature for 15 h. Sat. aq Na2S2O3 (6 mL) was added to the reaction mixture and the aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over Na2SO4, filtered, and the solvents were removed in vacuo. Purification by flash chromatography afforded the desired cyclization product.