Synlett 2014; 25(12): 1791-1792
DOI: 10.1055/s-0033-1378224
© Georg Thieme Verlag Stuttgart · New York

N-Mesityl-Substituted Triazolium Salts

Egor Chirkin
Laboratoire de Pharmacognosie UMR CNRS 8638, Université Paris Descartes, 4 Avenue de l’Observatoire, 75006 Paris, France   Email:
› Author Affiliations
Further Information

Publication History

Publication Date:
12 June 2014 (online)


Metal-free organocatalysis employing N-heterocyclic carbenes (NHCs) has attracted great interest because of its use in the construction of intricate molecular architectures from simple starting materials under mild reaction conditions.[1] The catalytic pathway of NHCs mimics that of thiamine-dependent enzymatic processes and passes through discrete reactive species, such as acyl anions and enolate or homoenolate equivalents.[2] This enables the selective generation of a set of versatile electrophilic (acyl azoliums) and nucleophilic (enolates, homoenolates) intermediates and makes NHCs efficient catalysts in such various reactions as acylation, cycloaddition, β-borylation, and elimination.

N-Mesityl substituted imidazolium (cat. A) and triazolium (cat. B) salts were introduced by Bode and co-workers as stable NHC precursors.[3] The imidazolium derivative favors the homoenolate pathway, whereas the triazolium precursor promotes almost all NHC-catalyzed transformations, except for benzoin and Stetter reactions. Chiral pre-catalysts like C and its enantiomer are also commercially available.[4]

It should be noted that the N-substituent is of crucial importance; for example, an N-phenyl substituents might not provide any product, while the Bode (N-mesityl) or Rovis (N-pentafluorophenyl)[5] catalysts are highly catalytically active.

Zoom Image
Figure 1 N-Mesityl-substituted imidazolium (cat. A) and triazolium (cat. B and C) carbene precursors. Chiral pre-catalyst C is commercially available (Mes = 1,3,5-trimethylphenyl).
  • References

  • 2 For a review on the mechanism of NHC-catalyzed reactions, see: Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
  • 3 Sohn SS, Bode JW. Org. Lett. 2005; 7: 3873
  • 4 He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418
  • 5 Kerr MS, Rovis TJ. J. Am. Chem. Soc. 2004; 126: 8876
  • 6 Li G.-Q, Dai L.-X, You S.-L. Org. Lett. 2009; 11: 1623
    • 7a Chiang P.-C, Kim Y, Bode JW. Chem. Commun. 2009; 30: 4566
    • 7b Hsieh S.-Y, Binanzer M, Kreituss I, Bode JW. Chem. Commun. 2012; 48: 8892
    • 7c Binanzer M, Hsieh S.-Y, Bode JW. J. Am. Chem. Soc. 2011; 133: 19698
    • 7d Gondo CA, Bode JW. Synlett 2013; 24: 1205
  • 8 Kobayashi S, Kinoshita T, Uehara H, Sudo T, Ryu S. Org. Lett. 2009; 11: 3934
  • 9 For the recent review on the homoenolates see: Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
  • 10 Fu Z, Sun H, Chen S, Tiwari B, Li G, Chi YR. Chem. Commun. 2013; 49: 261
    • 11a Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal. 2012; 2: 494
    • 11b Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J. Am. Chem. Soc. 2010; 132: 8810
    • 11c Wanner B, Mahatthananchai J, Bode JW. Org. Lett. 2011; 13: 5378
    • 12a Rommel M, Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2008; 130: 17266
    • 12b Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
  • 13 Romanov-Michailidis F, Besnard C, Alexakis A. Org. Lett. 2012; 14: 4906