Klin Monbl Augenheilkd 2014; 231(2): 136-143
DOI: 10.1055/s-0033-1360331
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Die Bedeutung der arteriellen Hypertonie für das primäre Offenwinkelglaukom

Relevance of Arterial Hypertension in Primary Open-Angle Glaucoma
C. Erb
1   Augenklinik am Wittenbergplatz, Berlin, Deutschland
,
H.-G. Predel
2   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule, Köln, Deutschland
› Author Affiliations
Further Information

Publication History

eingereicht 02 December 2013

akzeptiert 16 January 2014

Publication Date:
15 February 2014 (online)

Zusammenfassung

Das POWG ist gekennzeichnet durch ein multifaktorielles pathophysiologisches Geschehen, das durch eine Vielfalt von Risikofaktoren bestimmt wird. Obwohl der intraokulare Druck der derzeit bedeutendste Risikofaktor ist, reicht die alleinige Augendrucksenkung nicht aus, um in den meisten Fällen die glaukomatöse Optikusneuropathie zum Stillstand zu bringen. Deshalb werden zunehmend weitere Ansatzpunkte für die Glaukombehandlung wichtig. Die arterielle Hypertonie ist die häufigste Systemerkrankung bei Glaukompatienten und kommt bei jedem 2. Patienten vor. Neben ihrem geringen positiven Effekt auf den Augeninnendruck ist v. a. die negative Auswirkung auf die okuläre Durchblutung von Bedeutung. Dabei spielt weniger die arteriosklerotische Wirkung eine Rolle, sondern vielmehr die Auswirkungen der endothelialen Dysfunktion und der Regulationsstörungen mit zu geringen oder zu starken Tag-Nacht-Schwankungen des Blutdrucks. Die dadurch entstehenden Phasen der Ischämie und des Reperfusionsschadens können die glaukomatöse Optikusneuropathie ungünstig beeinflussen. Deshalb ist eine enge interdisziplinäre Zusammenarbeit zwischen Hausarzt/Internist/Kardiologe und Augenarzt notwendig, um das Glaukom langfristig stabil zu halten.

Abstract

Primary open-angle glaucoma is a multifactorial disease with a lot of different risk factors. Beside the fact that intraocular pressure (IOP) is the most important risk factor, the reduction of IOP alone is in most cases not sufficient to stop the progression of glaucoma. Therefore, other risk factors play also an important role. One of them is arterial hypertension, the most common systemic disease in glaucoma patients. Arterial hypertension increases IOP slightly, but has an important negative effect on ocular perfusion. Especially the endothelial dysfunction with a disturbed retinal autoregulation plays an important role. Therefore, ischaemic and reperfusion effects alter the optic nerve head and have negative input to the glaucomatous optic neuropathy. In future glaucoma patients should be monitored by ophthalmologists as well as by general physicians/cardiologists to optimise their treatment and to stabilise their glaucoma as well as possible.

 
  • Literatur

  • 1 Quigley HA, Brosnan AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262-267
  • 2 Lee PP, Feldman ZW, Ostermann J et al. Longitudinal prevalence of major eye diseases. Arch Ophthalmol 2003; 212: 1303-1310
  • 3 Krumpaszky HG, Lüdtke R, Mickler A et al. Blindness incidence in Germany. A population-based study from Württemberg-Hohenzollern. Ophthalmologica 1999; 213: 176-182
  • 4 Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 1965-1972
  • 5 Sultan MB, Mansberger SL, Lee PP. Understanding the importance of IOP variables in glaucoma: a systematic review. Surv Ophthalmol 2009; 54: 643-662
  • 6 Sergi M, Salerno DE, Rizzi M et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma 2007; 16: 42-46
  • 7 Kargi SH, Altin R, Koksal M et al. Retinal nerve fibre layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye (Lond) 2005; 19: 575-579
  • 8 Tsang CS, Chong SL, Ho CK et al. Moderate to severe obstructive sleep apnoea patients is associated with a higher incidence of visual field defect. Eye (Lond) 2006; 20: 38-42
  • 9 Flammer J, Orgül S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 10 Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma?. Surv Ophthalmol 2007; 52: S144-S154
  • 11 Chauhan BC, Mikelberg FS, Balaszi AG et al. Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma. Arch Ophthalmol 2008; 126: 1030-1036
  • 12 Grus FH, Joachim SC, Hoffmann EM et al. Complex autoantibody repertoires in patients with glaucoma. Mol Vis 2004; 10: 132-137
  • 13 Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 2533-2541
  • 14 Erb C, Heinke M. Oxidative stress in primary open-angle glaucoma. Front Biosci 2011; 3: 1524-1533
  • 15 Ren R, Jonas JB, Tian G et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 2010; 117: 259-266
  • 16 Edwards R, Thornton J, Ajit R et al. Cigarette smoking and primary open angle glaucoma: a systematic review. J Glaucoma 2008; 17: 558-566
  • 17 Budenz DL, Anderson DR, Feuer WJ et al. Ocular Hypertension Treatment Study Group. Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study. Ophthalmology 2006; 113: 2137-2143
  • 18 Rivera JL, Bell NP, Feldman RM. Risk factors for primary open angle glaucoma progression: what we know and what we need to know. Curr Opin Ophthalmol 2008; 19: 102-106
  • 19 Gallardo MJ, Aggarwal N, Cavanagh HD et al. Progression of glaucoma associated with the Sirsasana (headstand) yoga posture. Adv Ther 2006; 23: 921-925
  • 20 Schuman JS, Massicotte EC, Connolly S et al. Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology 2000; 107: 127-133
  • 21 Aydin P, Oram O, Akman A et al. Effect of wind instrument playing on intraocular pressure. J Glaucoma 2000; 322-324
  • 22 Deutsche Hochdruckliga DHL®. Leitlinien zur Behandlung der arteriellen Hypertonie. AWMF Register-Nr. 046/001. Im Internet: http://www.awmf.org/leitlinien/detail/II/046-001.html Stand: 1.6.2008
  • 23 Mancia G, Fagard R, Narkiewicz K et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31: 1281-1357
  • 24 Lowel H, Meisinger C, Heier M et al. [Epidemiology of hypertension in Germany. Selected results of population-representative cross-sectional studies]. Dtsch Med Wochenschr 2006; 131: 2586-2591
  • 25 Mahfoud F, Himmel F, Ukena C et al. Behandlungsstrategien bei therapierefraktärer arterieller Hypertonie. Dtsch Arztebl Int 2011; 108: 725-731
  • 26 Wolf-Maier K, Cooper RS, Kramer H et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004; 43: 10-17
  • 27 Porta M, Grosso A, Veglio F. Hypertensive retinopathy: thereʼs more that meets the eye. J Hypertens 2005; 23: 683-696
  • 28 Wong TY, Klein R, Klein BEK et al. Retinal microvascular abnormalities and their relations with hypertension, cardiovascular diseases and mortality. Surv Ophthalmol 2001; 46: 59-80
  • 29 Schnurrbusch UEK, Wolf S. Fundus hypertonicus. Ophthalmologe 2005; 102: 301-312
  • 30 Stübiger N, Erb C, Rohrbach JM et al. Perikorneale Gefäßveränderungen als Ausdruck systemischer Gefäßprozesse. Klin Monatsbl Augenheilkd 1997; 210: 69-73
  • 31 Keith NM, Wagener HP, Barker NW. Some different types of essential hypertension: their course and prognosis. Am J Med Sci 1939; 197: 332-343
  • 32 Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. VI. Hypertensive choroidopathy. Ophthalmology 1986; 93: 1383-1400
  • 33 Lund OE. Über den Wert retinaler Gefäßveränderungen in der Diagnostik der Arteriosklerose. Basel: Karger; 1964
  • 34 Tso MO, Abrams GW, Jampol LM. Hypertensive Retinopathy, Choroidopathy, and optic Neuropathy: A clinical and pathophysiological Approach to Classification. In: Singerman LJ, Jampol LM, eds. Retinal and choroidal Manifestations of systemic Disease. Baltimore: Williams and Wilkins; 1991: 79-127
  • 35 Göbel W, Matlach J. Hypertone Veränderungen des Fundus. Ophthalmologe 2013; 10: 995-1005
  • 36 Törnquist P, Alm A. Retinal and chorioidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand 1979; 106: 351-357
  • 37 Hayreh SS. Duke-elder lecture. Systemic arterial blood pressure and the eye. Eye (Lond) 1996; 10: 5-28
  • 38 Schröder A, Falk S, Wollstein J et al. Morphologie der Papille bei Patienten mit einer arteriellen Hypertonie. Z prakt Augenheilkd 2003; 24: 376-378
  • 39 Robinson F, Riva CE, Grunwald JE et al. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 1986; 27: 722-726
  • 40 Stefansson E, Wagner HG, Seida M. Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 1988; 47: 669-678
  • 41 Chemtob S, Beharry K, Rex J et al. Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 1991; 32: 1799-1807
  • 42 Chemtob S, Beharry K, Rex J et al. Changes in cerebrovascular prostaglandins and thromboxane as a function of systemic blood pressure. Cerebral blood flow autoregulation of the newborn. Circ Res 1990; 67: 674-682
  • 43 He Z, Vingrys AJ, Armitage JA et al. The role of blood pressure in glaucoma. Clin Exp Optom 2011; 94: 133-149
  • 44 Silva BR, Pernomian L, Bendhack LM. Contribution of oxidative stress to endothelial dysfunction in hypertension. Front Physiol 2012; 3: 441
  • 45 Ahmetoglu A, Erdol H, Simsek A et al. Effect of hypertension and candesartan on the blood flow velocity of the extraocular vessels in hypertensive patients. Eur J Ultrasound 2003; 16: 177-182
  • 46 Pache M, Kube T, Wolf S et al. Do angiographic data support a detailed classification of hypertensive fundus changes?. J Hum Hypertens 2002; 16: 405-410
  • 47 Schulte K, Wolf S, Koch MJ et al. Retinale Hämodynamik bei Patienten mit arterieller Hypertonie. Ophthalmologe 1993; 90: 479-485
  • 48 Nagel E, Vilser W, Lanzl I. Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response. Invest Ophthalmol Vis Sci 2004; 45: 1486-1492
  • 49 Wong TY, Klein R, Couper DJ et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 2001; 358: 1134-1140
  • 50 Witt N, Wong TY, Hughes AD et al. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 2006; 47: 975-981
  • 51 Sun C, Wang JJ, Mackey DA et al. Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol 2009; 54: 74-95
  • 52 Wong TY, Klein R, Klein BE et al. Retinal vessel diameters and their associations with age and blood pressure. Invest Ophthalmol Vis Sci 2003; 44: 4644-4650
  • 53 Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 2009; 54: 384-387
  • 54 Rizzoni D, Agabiti-Rosei E. Structural abnormalities of small resistance arteries in essential hypertension. Intern Emerg Med 2012; 7: 205-212
  • 55 Ritt M, Harazny JM, Ott C et al. Influence of blood flow on arteriolar wall-to-lumen ratio in the human retinal circulation in vivo. Microvasc Res 2012; 83: 111-117
  • 56 Schröder A, Erb C, Falk S et al. Farbsinnstörungen bei Patienten mit einer arteriellen Hypertonie. Ophthalmologe 2002; 99: 375-379
  • 57 Hacioglu G, Agar A, Ozkaya G et al. The effect of different hypertension models on visual evoked potentials. Int J Neurosci 2002; 112: 1321-1335
  • 58 Schröder A, Assali B, Rüfer F et al. Gesichtsfeldbefunde bei Patienten mit einer arteriellen Hypertonie. Klin Monatsbl Augenheilkd 2003; 220: 689-694
  • 59 Bonomi L, Marchini G, Marraffa M et al. Vascular risk factors for primary open angle glaucoma. The Egna-Neumarkt Study. Ophthalmology 2000; 107: 1287-1293
  • 60 Erb C, Gast U, Schremmer D. German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1593-1601
  • 61 Newman-Casey PA, Talwar N, Nan B et al. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmology 2011; 118: 1318-1326
  • 62 Tielsch JM, Katz J, Sommer A et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol 1995; 113: 216-221
  • 63 Wang N, Peng Z, Fan B et al. [Case control study on the risk factors of primary open angle glaucoma in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2002; 23: 293-296
  • 64 Mitchell P, Lee AJ, Rochtchina E et al. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma 2004; 13: 319-326
  • 65 Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 2007; 245: 795-802
  • 66 Cole DF. Transport across the isolated ciliary body of ox and rabbit. Brit J Ophthalmol 1962; 46: 577
  • 67 Carel RS, Korczyn AD, Rock M et al. Association between ocular pressure and certain health parameters. Ophthalmology 1984; 91: 311-314
  • 68 Pederson JF, Green K. Aqueous humor dynamics: experimental studies. Exp Eye Res 1973; 15: 277-297
  • 69 Funk R, Rohen JW. Intraocular microendoscopy of the ciliary-process vasculature in albino rabbits: effects of vasoactive agents. Exp Eye Res 1987; 45: 597-606
  • 70 Macri FJ, Cevario SJ. The formation and inhibition of aqueous humor production. A proposed mechanism of action. Arch Ophthalmol 1978; 96: 1664-1667
  • 71 Kiel JW, Hollingsworth M, Rao R et al. Ciliary blood flow and aqueous humor production. Prog Retin Eye Res 2011; 30: 1-17
  • 72 Gherghel D, Hosking SL, Orgül S. Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol 2004; 49: 491-508
  • 73 Gwin RM, Gelatt KN, Chiou CY. Adrenergic and cholinergic innervation of the anterior segment of the normal and glaucomatous dog. Invest Ophthalmol Vis Sci 1979; 18: 674-682
  • 74 Thiel R. Druckschwankungen nach Reizung des Sympathicus. Klin Monatsbl Augenheilkd 1929; 82: 109
  • 75 Philipp T, Cordes U, Zschiedrich H et al. [Sympathicus excitability and vascular reactivity in normotensive subjects and in patients with essential hypertension]. Verh Dtsch Ges Inn Med 1977; 83: 283-285
  • 76 Harrison JM, Kiel JW, Smith S. Effect of ocular perfusion pressure on retinal function in the rabbit. Vision Res 1997; 37: 2339-2347
  • 77 Jia L, Li Y, Xiao C et al. Angiotensin II induces inflammation leading to cardiac remodeling. Front Biosci (Landmark Ed) 2012; 17: 221-231
  • 78 Sramek SJ, Wallow IH, Tewksbury DA et al. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest Ophthalmol Vis Sci 1992; 33: 1627-1632
  • 79 Wagner J, Jan Danser AH, Derkx FH et al. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmol 1996; 80: 159-163
  • 80 Vaajanen A, Vapaatalo H. Local ocular renin-angiotensin system – a target for glaucoma therapy?. Basic Clin Pharmacol Toxicol 2011; 109: 217-224
  • 81 Campese VM, Shaohua Y, Huiquin Z. Oxidative stress mediates angiotensin II-dependent stimulation of sympathetic nerve activity. Hypertension 2005; 46: 533-539
  • 82 Isakova LS, Danilov GE, Egorkina SB et al. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala]. Fiziol Zh SSSR Im I M Sechenova 1989; 75: 124-130
  • 83 Vaajanen A, Luhtala S, Oksala O et al. Does the renin-angiotensin system also regulate intra-ocular pressure?. Ann Med 2008; 40: 418-427
  • 84 Lu HG, Liu P, Shao TM et al. [Effects of angiotensin II and its receptor blockers on migration and endothelin-1 expression of rat vascular adventitial fibroblast subpopulations]. Yao Xue Xue Bao 2012; 47: 1428-1433
  • 85 Konczalla J, Wanderer S, Mrosek J et al. Crosstalk between the angiotensin and endothelin-system in the cerebrovasculature. Curr Neurovasc Res 2013; 10: 335-345
  • 86 Speed JS, Pollock DM. Endothelin, kidney disease, and hypertension. Hypertension 2013; 61: 1142-1145
  • 87 Chen HY, Chang YC, Chen WC et al. Association between plasma endothelin-1 and severity of different types of glaucoma. J Glaucoma 2013; 22: 117-122
  • 88 Shoshani YZ, Harris A, Shoja MM et al. Endothelin and its suspected role in the pathogenesis and possible treatment of glaucoma. Curr Eye Res 2012; 37: 1-11
  • 89 Noske W, Hensen J, Wiederholt M. Endothelin-like immunoreactivity in aqueous humor of patients with primary open-angle glaucoma and cataract. Graefes Arch Clin Exp Ophthalmol 1997; 235: 551-552
  • 90 Choritz L, Rosenthal R, Fromm M et al. Pharmacological and functional characterization of endothelin receptors in bovine trabecular meshwork and ciliary muscle. Ophthalmic Res 2005; 37: 179-187
  • 91 Wiederholt M, Bielka S, Schweig F et al. Regulation of outflow rate and resistance in the perfused anterior segment of the bovine eye. Exp Eye Res 1995; 61: 223-234
  • 92 Costa VP, Arcieri ES, Harris A. Blood pressure and glaucoma. Br J Ophthalmol 2009; 93: 1276-1282
  • 93 Xu L, Wang H, Wang Y et al. Intraocular pressure correlated with arterial blood pressure: the Beijing eye study. Am J Ophthalmol 2007; 144: 461-462
  • 94 Höhn R, Mirshahi A, Zwiener I et al. [Is there a connection between intraocular pressure and blood pressure? Results of the Gutenberg Health Study and review of the current study situation]. Ophthalmologe 2013; 110: 210-217
  • 95 Fuchsjager-Mayrl G, Wally B, Georgopoulos M et al. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2004; 45: 834-839
  • 96 Leske MC, Wu SY, Hennis A et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008; 115: 85-93
  • 97 Quigley HA, West SK, Rodriguez J et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119: 1819-1826
  • 98 Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 1965-1972
  • 99 Hoyer J. Blutdruckabhängige Änderungen der Aktivität retinaler Ganglienzellen. Klin Monatsbl Augenheilkd 1975; 166: 185-189
  • 100 Osborne NN. Mitochondria: Their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 2010; 90: 750-757
  • 101 Lee S, Van Bergen NJ, Kong GY et al. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res 2011; 93: 204-212
  • 102 Cherecheanu AP, Garhofer G, Schmidl D et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36-42
  • 103 Burgoyne CF, Downs JC, Bellezza AJ et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Ret Eye Res 2005; 24: 39-73
  • 104 Béchetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol 1994; 232: 675-679
  • 105 Hayreh SS. Duke-elder lecture. Systemic arterial blood pressure and the eye. Eye (Lond) 1996; 10: 5-28
  • 106 Topouzis F, Coleman AL, Harris A et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol 2006; 142: 60-67
  • 107 He Z, Nguyen CT, Armitage JA et al. Blood pressure modifies retinal susceptibility to intraocular pressure elevation. PLoS One 2012; 7: e31104-e31104
  • 108 Tokunaga T, Kashiwagi K, Tsumura T et al. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal tension glaucoma. Jpn J Ophthalmol 2004; 48: 380-385
  • 109 Buckley C, Hadoke PW, Henry E et al. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol 2002; 86: 227-232
  • 110 Fadini GP, Pagano C, Baesso I et al. Reduced endothelial progenitor cells and brachial artery flow-mediated dilation as evidence of endothelial dysfunction in ocular hypertension and primary open-angle glaucoma. Acta Ophthalmol 2010; 88: 135-141
  • 111 Erb C, Voelker W, Adler M et al. Color-vision disturbances in patients with coronary artery disease. Col Res Appl 2001; 26: S288-S291
  • 112 Erb C, Hettesheimer H, Stübiger N et al. Rauschfeldbefunde bei 24 Patienten mit koronarer Herzkrankheit. Klin Monatsbl Augenheilkd 2000; 217: 274-277
  • 113 Asano G, Takashi E, Ishiwata T et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch 2003; 70: 384-392
  • 114 Vanhoutte PM. Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 2009; 73: 595-601
  • 115 Ong K, Farinelli A, Billson F et al. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology 1995; 102: 1632-1638
  • 116 Stroman GA, Stewart WC, Golnik KC et al. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol 1995; 113: 168-172
  • 117 Goldstein IB, Bartzokis G, Hance DB et al. Relationship between blood pressure and subcortical lesions in healthy elderly people. Stroke 1998; 29: 765-772
  • 118 Tutaj M, Brown CM, Brys M et al. Dynamic cerebral autoregulation is impaired in glaucoma. J Neurol Sci 2004; 220: 49-54
  • 119 Hoehn R, Mirshahi A, Schulz A et al. Intraocular pressure: Seasonal variations and associations with cardiovascular medication in the Gutenberg Health Study. DOG-Abstract 2013. Ophthalmologe 2013; 110 (Suppl. 01) 15
  • 120 Salim S, Shields MB. Glaucoma and systemic diseases. Surv Ophthalmol 2010; 55: 64-77
  • 121 Iskedjian M, Walker JH, Desjardins O et al. Effect of selected antihypertensives, antidiabetics, statins and diuretics on adjunctive medical treatment of glaucoma: a population based study. Curr Med Res Opin 2009; 25: 1879-1888
  • 122 Quaranta L, Gandolfo F, Turano R et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 2917-2923