Synlett 2014; 25(09): 1325-1330
DOI: 10.1055/s-0033-1341232
letter
© Georg Thieme Verlag Stuttgart · New York

Copper(II) Triflate as a Mild and Efficient Catalyst for Ferrier Glycosylation: Synthesis of 2,3-Unsaturated O-Glycosides

Batthula Srinivas
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India   Fax: +91(40)27160387   Email: skashyap@iict.res.in
,
Thurpu Raghavender Reddy
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India   Fax: +91(40)27160387   Email: skashyap@iict.res.in
,
Palakodety Radha Krishna*
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India   Fax: +91(40)27160387   Email: skashyap@iict.res.in
,
Sudhir Kashyap*
D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India   Fax: +91(40)27160387   Email: skashyap@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 20 February 2014

Accepted after revision: 24 March 2014

Publication Date:
10 April 2014 (online)


Abstract

Various acceptors including carbohydrates, amino acids, natural products, and hydroxylamine derivatives were coupled with 3,4,6-tri-O-acetyl-d-glucal in the presence of Cu(OTf)2 as catalyst. The protocol offers facile and efficient Ferrier glycosylation for the synthesis of 2,3-unsaturaed O-glycosides in good yields and high anomeric selectivity.

Supporting Information

 
  • References and Notes

    • 1a Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Science 2001; 291: 2370
    • 1b McAuliffe JC, Hindsgaul O. Frontiers Mol. Biol. 2000; 30: 249
    • 1c Varki A. Glycobiology 1993; 3: 97
    • 2a Schreiber SL. Science 2000; 287: 1964
    • 2b Hotha S, Tripathi A. J. Comb. Chem. 2005; 7: 968
    • 2c Review: Danishefsky SJ, Bilodeau MT. Angew. Chem., Int. Ed. Engl. 1996; 35: 1380
    • 2d Collins PM, Ferrier RJ. Monosaccharides, Their Chemistry and Their Roles in Natural Products . John Wiley and Sons; Chichester: 1995: 317
    • 3a Ferrier RJ, Prasad N. J. Chem. Soc. C 1969; 570
    • 3b Ferrier RJ, Prasad N. J. Chem. Soc. C 1969; 581
    • 3c Review: Gómez AM, Lobo F, Uriel C, López JC. Eur. J. Org. Chem. 2013; 7221
  • 4 Williams NR, Wander JD. The Carbohydrates in Chemistry and Biochemistry . Academic Press; New York: 1980: 761
  • 5 Bussolo VD, Kim YJ, Gin DY. J. Am. Chem. Soc. 1998; 120: 13515
    • 6a Schmidt RR, Angerbauer R. Carbohydr. Res. 1981; 89: 159
    • 6b Angerbauer R, Schmidt RR. Carbohydr. Res. 1981; 89: 193
    • 6c Schmidt RR, Angerbauer R. Carbohydr. Res. 1979; 89: 272
  • 7 Schmidt RR, Angerbauer R. Angew. Chem., Int. Ed. Engl. 1977; 16: 783
    • 8a Fraser-Reid B. Acc. Chem. Res. 1985; 18: 347
    • 8b Bracherro MP, Cabrera EF, Gómez GM, Peredes LM. R. Carbohydr. Res. 1998; 308: 181
    • 10a Ferrier RJ. J. Chem. Soc. 1964; 5443
    • 10b Ciment DM, Ferrier RJ. J. Chem. Soc. C 1966; 441
    • 10c Ferrier RJ, Sankey GH. J. Chem. Soc. C 1966; 2345
    • 11a Babu BS, Balasubramanian KK. Tetrahedron Lett. 2000; 41: 1271
    • 11b Masson C, Soto J, Bessodes M. Synlett 2000; 1281
    • 11c Takhi M, Abdel-Rahman AA.-H, Schmidt RR. Synlett 2001; 427
    • 11d Swamy NR, Venkateswarlu Y. Synthesis 2002; 598
    • 11e Hotha S, Tripathi A. Tetrahedron Lett. 2005; 46: 4555
    • 11f Bettadaiah BK, Srinivas P. Tetrahedron Lett. 2003; 44: 7257
    • 11g Kim H, Men H, Lee C. J. Am. Chem. Soc. 2004; 126: 1336
    • 11h Swamy NR, Srinivasulu M, Reddy TS, Goud TV, Venkateswarlu Y. J. Carbohydr. Chem. 2004; 23: 435
    • 11i Rafiee E, Tangestaninejad S, Habibi MH, Mirkhani V. Bioorg. Med. Chem. Lett. 2004; 14: 3611
    • 11j Babu JL, Khare A, Vankar YD. Molecules 2005; 10: 884
    • 11k Naik PU, Nara JS, Harjani JR, Salunkhe MM. J. Mol. Catal. A: Chem. 2005; 234: 35
    • 11l Procopio A, Dalposso R, De Nino A, Nardi M, Oliverio M, Russo B. Synthesis 2006; 2608
    • 11m Procopio A, Dalpozzo R, Nino AD, Maiuolo L, Nardi M, Oliverio M, Russo B. Carbohydr. Res. 2007; 342: 2125
    • 11n Balamurugan R, Kopollu SR. Tetrahedron 2009; 65: 8139
    • 11o Rodriguez OM, Colinas PA, Bravo RD. Synlett 2009; 1154
    • 11p Gorityala BK, Lorpitthaya R, Bai Y, Liu X.-W. Tetrahedron 2009; 65: 5844
    • 11q Nagaraj P, Ramesh NG. Tetrahedron Lett. 2009; 50: 3970
    • 11r Chen P.-R, Wang S.-S. Tetrahedron 2012; 68: 5356
    • 11s Freitas JC. R, Couto TR, Paulino AA. S, de Freitas Filho JR, Malvestiti I, Oliveira RA, Menezes PH. Tetrahedron 2012; 68: 10611
    • 11t Descotes G, Martin J.-C. Carbohydr. Res. 1977; 56: 168
    • 11u Bhate P, Horton D, Priebe W. Carbohydr. Res. 1985; 144: 331
    • 11v Zhang G, Shi L, Liu Q, Wang J, Li L, Liu X. Tetrahedron 2007; 63: 9705
    • 11w Zhang G, Liu Q. Synth. Commun. 2007; 37: 3485
    • 11x Tayama E, Otoyama S, Isaka W. Chem. Commun. 2008; 4216
    • 11y Reddy ChR, Rao YS, Kumar TP, Chandrasekhar S. Synthesis 2008; 122
    • 11z Chen P.-R, Lin L. Tetrahedron 2013; 69: 4524
    • 12a Gorityala BK, Cai S, Lorpitthaya R, Ma J, Pasunooti KK, Liu X.-W. Tetrahedron Lett. 2009; 50: 676
    • 12b Zhou J, Zhang B, Yang G, Chen X, Wang Q, Wang Z, Zhang J, Tang J. Synlett 2010; 893
    • 12c Hadfield AF, Sartorelli AC. Carbohydr. Res. 1982; 101: 197
    • 12d Engler TA, Letavic MA, Combrink KD, Takusagawa F. J. Org. Chem. 1990; 55: 5812
    • 12e Yadav JS, Satyanarayana M, Balanarsaiah E, Raghavendra S. Tetrahedron Lett. 2006; 47: 6095
    • 12f Agarwal A, Rani S, Vankar YD. J. Org. Chem. 2004; 69: 6137
    • 12g Misra AK, Tiwari P, Agnihotri G. Synthesis 2005; 260
    • 13a Toshima K, Ishizuka T, Matsuo G, Nakata M, Kinoshita M. J. Chem. Soc., Chem. Commun. 1993; 704
    • 13b Sobti A, Sulikowski GA. Tetrahedron Lett. 1994; 35: 3661
    • 13c Koreeda M, Houston TA, Shull BK, Klemke E, Tuinman RJ. Synlett 1995; 90
    • 13d López JC, Gómez AM, Valverde S, Fraser-Reid B. J. Org. Chem. 1995; 60: 3851
    • 13e De K, Legros J, Crousse B, Bonnet-Delpon D. Tetrahedron 2008; 64: 10497
    • 14a Regulatory guidelines for metal content; Doc. Ref. CPMP/SWP/QWP/4446/00 (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003588.pdf, accessed on April 8, 2014)�.
    • 14b Kumar NU, Reddy BS, Reddy VP, Bandichhor R. Tetrahedron Lett. 2012; 53: 4354
    • 15a Besset T, Cahard D, Pannecoucke X. J. Org. Chem. 2013; 79: 413
    • 15b He Y.-T, Li L.-H, Yang Y.-F, Zhou Z.-Z, Hua H.-L, Liu X.-Y, Liang Y.-M. Org. Lett. 2013; 16: 270
    • 15c Tschan MJ.-L, Thomas CM, Strub H. Adv. Synth. Catal. 2009; 351: 2496
    • 15d Kusunuru AK, Tatina M, Yousuf SK, Mukherjee D. Chem. Commun. 2013; 49: 10154
    • 16a Hotha S, Kashyap S. J. Am. Chem. Soc. 2006; 128: 9620
    • 16b Hotha S, Kashyap S. Tetrahedron Lett. 2006; 47: 2021
    • 16c Kashyap S, Vidadala SR, Hotha S. Tetrahedron Lett. 2007; 48: 8960
    • 16d Vidadala SR, Thadke SA, Hotha S, Kashyap S. J. Carbohydr. Chem. 2012; 31: 241
    • 16e Hotha S, Kashyap S. J. Org. Chem. 2006; 71: 364
    • 16f Narasimha G, Srinivas B, RadhaKrishna P, Kashyap S. Synlett 2014; 523
    • 16g Srinivas B, Narasimha G, Radha Krishna P, Kashyap S. Synthesis 2014; DOI: 10.1055/s-0033-1340873.
  • 17 Cu(OTf)2 Mediated Ferrier Glycosylation; Typical Procedure: To a stirred solution of 3,4,6-tri-O-acetyl-d-glucal 1 (1 equiv) and acceptor (1.2 equiv) in anhydrous MeCN (2 mL/mmol) under an atmosphere of argon was added Cu(OTf)2 (2 mol%) at r.t. The reaction mixture was stirred until complete consumption of the starting material (glycal). The solvent was concentrated in vacuo, the crude residue was re-dissolved in dichloromethane and loaded on a silica gel column. The product was purified by silica gel chromatography (hexane–EtOAc) to afford the 2,3-unsaturated O-glycosides in excellent yields. The identities of all the Ferrier products were confirmed by IR, 1H NMR, 13C NMR and MS/HRMS spectroscopic analysis. p-Trifuoromethylphenyl 4,6-Di-O-acetyl-2,3-dideoxy-erythro-hex-2-eno-1-thio-α-d-pyranoside (3f): Yellow oil; [α]D +222.368 (c 19.0, CHCl3). IR (CHCl3): 3019, 2955, 2929, 1743, 1606, 1370, 1325, 1226, 1166, 1124, 1061, 1015, 952, 833, 772, 750, 667, 599 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.64 (d, J = 8.1 Hz, 2 H, Ar-H), 7.56 (d, J = 8.3 Hz, 2 H, Ar-H), 6.05 (dt, J = 11.3, 1.2 Hz, 1 H, H-3), 5.92 (dt, J = 10.1, 1.5 Hz, 1 H, H-2), 5.87 (br s, 1 H, H-1), 5.41 (dd, J = 9.4, 1.9 Hz, 1 H, H-4), 4.42 (m, 1 H, H-5), 4.29 (d, J = 12.1, 5.6 Hz, 1 H, Ha-6), 4.24 (dd, J = 12.1, 2.6 Hz, 1 H, Hb-6), 2.12 (s, 3 H), 2.04 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.6, 170.2, 130.2, 128.3, 127.8, 125.7, 125.6, 82.7, 67.6, 64.9, 62.8, 20.9, 20.6. MS (ESI): m/z (%) = 408 (100) [M + NH4]+. Cycloproylmethyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3g): Colorless oil. IR (CHCl3): 3017, 2920, 2852, 1741, 1370, 1219, 1036, 972, 907, 751, 667 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.91–5.885 (m, 2 H, H-3, H-2), 5.31 (dd, J = 9.5, 1.4 Hz, 1 H, H-4), 5.08 (br s, 1 H, H-1), 4.23 (dd, J = 11.9, 5.3 Hz, 1 H, Ha-6), 4.18 (dd, J = 11.8, 2.4 Hz, 1 H, Hb-6), 4.15 (m, H-5), 3.51 (dd, J = 10.4, 7.3 Hz, 1 H, OHCH), 3.43 (dd, J = 10.4, 6.9 Hz, 1 H, OHCH), 2.09 (s, 3 H, OAc), 2.09 (s, 3 H, OAc), 1.15–1.09 (m, 1 H, cyclopropyl), 0.59–0.55 (m, 2 H, cyclopropyl), 0.28–0.20 (m, 2 H, cyclopropyl). 13C NMR (75 MHz, CDCl3): δ = 170.6, 170.2, 128.9, 127.8, 93.8, 73.4, 66.8, 65.2, 63.0, 20.9, 20.7, 10.5, 3.2, 3.0. MS (ESI): m/z (%) = 302 (100) [M + NH4]+. (2,5-Dioxopyrrolidine-1-yl)-oxy 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3i): Colorless oil; [α]D +150.000 (c 10.4, CHCl3). IR (CHCl3): 2926, 2853, 1724, 1432, 1370, 1220, 1206, 1108, 1045, 907, 814, 771, 650, 606 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.15 (d, J = 10.2 Hz, 1 H, H-3), 6.01 (dt, J = 10.2, 2.1 Hz, 1 H, H-2), 5.57 (br s, 1 H, H-1), 5.45 (ddd, J = 10.1, 3.4, 1.7 Hz, 1 H, H-4), 4.60 (dt, J = 10.1, 2.8 Hz, 1 H, H-5), 4.32 (dd, J = 12.5, 3.4 Hz, 1 H, Ha-6), 4.18 (dd, J = 12.5, 2.3 Hz, 1 H, Hb-6), 2.74 (s, 4 H, COC2 H 4CO), 2.12 (s, 3 H, OAc), 2.10 (s, 3 H, OAc). 13C NMR (75 MHz, CDCl3): δ = 171.1, 170.7, 170.2, 133.5, 122.9, 98.1, 68.2, 64.2, 61.8, 25.5, 20.9, 20.7. MS (ESI): m/z (%) = 345 (100) [M + NH4]+. 9-Fluorenylmethyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3k): Viscous liquid; [α]D +68.750 (c 0.8, CHCl3). IR (CHCl3): 2923, 1743, 1447, 1371, 1231, 1038, 741, 610 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.77 (d, J = 7.5 Hz, 2 H, Ar-H), 7.63 (m, 2 H, Ar-H), 7.40 (t, J = 7.5 Hz, 2 H, Ar-H), 7.31 (d, J = 7.5 Hz, 2 H, Ar-H), 5.94–5.93 (m, 2 H, H-3, H-2), 5.32 (d, J = 9.3 Hz, 1 H, H-4), 5.12 (br s, 1 H, H-1), 4.23–4.17 (m, 2 H, Ha-6, OHCH), 4.16–4.12 (m, 2 H, OHCH, H-5), 4.10 (dd, J = 9.3, 7.5 Hz, 1 H, Hb-6), 3.75 (dd, J = 9.3, 7.6 Hz, 1 H, OCH2CH), 2.12 (s, 3 H, -OAc), 1.93 (s, 3 H, -OAc). 13C NMR (75 MHz, CDCl3): δ = 170.6, 170.2, 144.6, 144.4, 141.0, 129.2, 127.6, 127.4, 126.8, 125.0, 119.8, 94.7, 71.2, 67.1, 65.2, 65.2, 62.8, 47.7, 20.9, 20.5. MS (ESI): m/z (%) = 431.10 (100) [M + Na]+. HRMS (ESI): m/z calcd for C24H28NO6 + [M + NH4]+ 426.19116; found 426.19118.