Synthesis 2014; 46(12): 1583-1592
DOI: 10.1055/s-0033-1341152
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

The Cobalt-Catalyzed Cross-Coupling Reaction of Alkyl Halides with Alkyl Grignard Reagents: A New Route to Constructing Quaternary Carbon Centers­

Takanori Iwasaki
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Fax: +81(6)68797390   Email: [email protected]
,
Hiroaki Takagawa
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Fax: +81(6)68797390   Email: [email protected]
,
Kanako Okamoto
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Fax: +81(6)68797390   Email: [email protected]
,
Surya Prakash Singh
b  Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
,
Hitoshi Kuniyasu
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Fax: +81(6)68797390   Email: [email protected]
,
Nobuaki Kambe*
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Fax: +81(6)68797390   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 10 February 2014

Accepted after revision: 20 March 2014

Publication Date:
14 May 2014 (online)


Abstract

The cross-coupling of alkyl (pseudo)halides with alkyl Grignard reagents is catalyzed efficiently by a cobalt(II) chloride–lithium iodide–1,3-diene catalytic system, which provides a new synthetic tool for constructing sp3 carbon chains. This system is particularly useful for creating quaternary carbon centers via the use of tertiary alkyl Grignard reagents. Various functional groups including esters, amides and carbamates are well tolerated.

 
  • References


    • For representative reviews, see:
    • 1a Cárdenas DJ. Angew. Chem. Int. Ed. 2003; 42: 384
    • 1b Netherton MR, Fu GC. Adv. Synth. Catal. 2004; 346: 1525
    • 1c Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 1d Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
    • 1e Hu XL. Chem. Sci. 2011; 2: 1867
    • 2a Tamao K, Kiso Y, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 9268
    • 2b Kiso Y, Tamao K, Kumada M. J. Organomet. Chem. 1973; 50: C12
    • 2c Hayashi T, Konishi M, Yokota K.-i, Kumada M. Chem. Lett. 1980; 767
    • 3a Burns DH, Miller JD, Chan H.-K, Delaney MO. J. Am. Chem. Soc. 1997; 119: 2125
    • 3b Donkervoort JG, Vicario JL, Jastrzebski JT. B. H, Gossage RA, Cahiez G, van Koten G. J. Organomet. Chem. 1998; 558: 61
    • 3c Cahiez G, Chaboche C, Jézéquel M. Tetrahedron 2000; 56: 2733
    • 3d Terao J, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2003; 125: 5646
    • 3e Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2007; 46: 2086
    • 3f Cahiez G, Gager O, Buendia J. Synlett 2010; 299
    • 3g Yang C.-T, Zhang Z.-Q, Liang J, Liu J.-H, Lu X.-Y, Chen H.-H, Liu L. J. Am. Chem. Soc. 2012; 134: 11124
    • 3h Ren P, Stern L.-A, Hu XL. Angew. Chem. Int. Ed. 2012; 51: 9110
    • 4a Terao J, Kambe N. Bull. Chem. Soc. Jpn. 2006; 79: 663
    • 4b Terao J, Kambe N. Acc. Chem. Res. 2008; 41: 1545
    • 4c Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
    • 4d Terao J, Naitoh Y, Kuniyasu H, Kambe N. Chem. Lett. 2003; 32: 890
    • 4e Terao J, Todo H, Watanabe H, Ikumi A, Kambe N. Angew. Chem. Int. Ed. 2004; 43: 6180
    • 4f Terao J, Naitoh Y, Kuniyasu H, Kambe N. Chem. Commun. 2007; 825
    • 4g Singh SP, Terao J, Kambe N. Tetrahedron Lett. 2009; 50: 5644
    • 4h Singh SP, Iwasaki T, Terao J, Kambe N. Tetrahedron Lett. 2011; 52: 774
    • 4i Iwasaki T, Tsumura A, Omori T, Kuniyasu H, Terao J, Kambe N. Chem. Lett. 2011; 40: 1024
    • 4j Shen R, Iwasaki T, Terao J, Kambe N. Chem. Commun. 2012; 48: 9313
    • 4k Iwasaki T, Higashikawa K, Reddy VP, Ho WW. S, Fujimoto Y, Fukase K, Terao J, Kuniyasu H, Kambe N. Chem. Eur. J. 2013; 19: 2956
    • 4l For the alkylation of 2-methylthiobenzothiazoles, see: Ghaderi A, Iwasaki T, Fukuoka A, Terao J, Kambe N. Chem. Eur. J. 2013; 19: 2951
  • 5 Iwasaki T, Takagawa H, Singh SP, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2013; 135: 9604

    • For reviews on Co-catalyzed C–C bond forming reactions, see:
    • 6a Shinokubo H, Oshima K. Eur. J. Org. Chem. 2004; 2081
    • 6b Yorimitsu H, Oshima K. Pure Appl. Chem. 2006; 78: 441
    • 6c Gosmini C, Bégouin J.-M, Moncomble A. Chem. Commun. 2008; 3221
    • 6d Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435

      For Co-catalyzed C–C bond formation between sp3 carbon centers, see:
    • 7a Cahiez G, Chaboche C, Duplais C, Giulliani A, Moyeux A. Adv. Synth. Catal. 2008; 350: 1484
    • 7b Zhou W, Napoline JW, Thomas CM. Eur. J. Inorg. Chem. 2011; 2029

    • For examples with allylic and benzylic nucleophiles, see:
    • 7c Tsuji T, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2002; 41: 4137
    • 7d Ohmiya H, Tsuji T, Yorimitsu H, Oshima K. Chem. Eur. J. 2004; 10: 5640
    • 7e Someya H, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1565
    • 7f Someya H, Ohmiya H, Yorimitsu H, Oshima K. Tetrahedron 2007; 63: 8609
  • 8 Pangborn AM, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Organometallics 1996; 15: 1518
  • 9 Green TW, Wuts PG. M. Protective Groups in Organic Synthesis . 4th ed. Wiley; New York: 2006