Synlett 2014; 25(09): 1257-1262
DOI: 10.1055/s-0033-1341108
letter
© Georg Thieme Verlag Stuttgart · New York

Convenient Synthesis of 5-Arylidene-2-imino-4-thiazolidinone Derivatives Using Microwave Irradiation

Manal Sarkis
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France   Fax: +33(1)42864082   Email: emmanuelle.braud@parisdescartes.fr
,
Diem-Ngan Tran
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France   Fax: +33(1)42864082   Email: emmanuelle.braud@parisdescartes.fr
,
Maria Chiara Dasso Lang
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France   Fax: +33(1)42864082   Email: emmanuelle.braud@parisdescartes.fr
,
Christiane Garbay
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France   Fax: +33(1)42864082   Email: emmanuelle.braud@parisdescartes.fr
,
Emmanuelle Braud*
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France   Fax: +33(1)42864082   Email: emmanuelle.braud@parisdescartes.fr
› Author Affiliations
Further Information

Publication History

Received: 07 February 2014

Accepted after revision: 13 March 2014

Publication Date:
03 April 2014 (online)


Abstract

A concise approach for the preparation of 5-arylidene-2-imino-4-thiazolidinone derivatives is described. Structurally diverse amines, isothiocyanates, aldehydes, and chloroacetyl chloride were combined under microwave irradiation to afford new 5-arylidene-2-imino-4-thiazolidinone derivatives. The one-pot synthesis involves the in situ formation of a thiourea followed by reaction with chloroacetyl chloride and an aldehyde to generate the target compounds.

Supporting Information

 
  • References and Notes

  • 1 Verma A, Saraf SK. Eur. J. Med. Chem. 2008; 43: 897
  • 2 Mengden T, Steuer C, Klein CD. J. Med. Chem. 2012; 55: 743
  • 3 Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F. Bioorg. Med. Chem. 2006; 14: 3859
  • 4 Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M. Bioorg. Med. Chem. 2008; 16: 3714
  • 5 Apostolidis I, Liaras K, Geronikaki A, Hadjipavlou-Litina D, Gavalas A, Sokovic M, Glamoclija J, Ciric A. Bioorg. Med. Chem. 2013; 21: 532
  • 6 Ottanà R, Maccari R, Barreca ML, Bruno G, Rotondo A, Rossi A, Chiricosta G, Di Paola R, Sautebin L, Cuzzocrea S, Vigorita MG. Bioorg. Med. Chem. 2005; 13: 4243
  • 7 Ottanà R, Maccari R, Ciurleo R, Vigorita MG, Panico AM, Cardile V, Garufi F, Ronsisvalle S. Bioorg. Med. Chem. 2007; 15: 7618
  • 8 Felise HB, Nguyen HV, Pfuetzner RA, Barry KC, Jackson SR, Blanc MP, Bronstein PA, Kline T, Miller SI. Cell Host Microbe 2008; 4: 325
  • 9 Kline T, Felise HB, Barry KC, Jackson SR, Nguyen HV, Miller SI. J. Med. Chem. 2008; 51: 7065
  • 10 He L, Zhang L, Liu X, Li X, Zheng M, Li H, Yu K, Chen K, Shen X, Jiang H, Liu H. J. Med. Chem. 2009; 52: 2465
  • 11 Bhandari SV, Bothara KG, Patil AA, Chitre TS, Sarkate AP, Gore ST, Dangre SC, Khachane CV. Bioorg. Med. Chem. 2009; 17: 390
  • 12 Kato Y, Kita Y, Hirasawa-Taniyama Y, Nishio M, Mihara K, Ito K, Yamanaka T, Seki J, Miyata S, Mutoh S. Eur. J. Pharmacol. 2003; 473: 163
  • 13 Kato Y, Kita Y, Nishio M, Hirasawa Y, Ito K, Yamanaka T, Motoyama Y, Seki J. Eur. J. Pharmacol. 1999; 384: 197
  • 14 Havrylyuk D, Mosula L, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Eur. J. Med. Chem. 2010; 45: 5012
  • 15 Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan PW, Fang B, Zhang B, Yan B. J. Med. Chem. 2008; 51: 1242
  • 16 Bolli MH, Abele S, Binkert C, Bravo R, Buchmann S, Bur D, Gatfield J, Hess P, Kohl C, Mangold C, Mathys B, Menyhart K, Müller C, Nayler O, Scherz M, Schmidt G, Sippel V, Steiner B, Strasser D, Treiber A, Weller T. J. Med. Chem. 2010; 53: 4198
  • 17 Bolli M, Sherz M. WO 054215, 2005
  • 18 Piali L, Froidevaux S, Hess P, Nayler O, Bolli MH, Schlosser E, Kohl C, Steiner B, Clozel M. J. Pharmacol. Exp. Ther. 2011; 337: 547
  • 19 Pan B, Huang RZ, Han SQ, Qu D, Zhu ML, Wei P, Ying HJ. Bioorg. Med. Chem. Lett. 2010; 20: 2461
  • 20 Park H, Kim SY, Kyung A, Yoon TS, Ryu SE, Jeong DG. Bioorg. Med. Chem. Lett. 2012; 22: 1271
  • 21 Brown FC. Chem. Rev. 1961; 61: 463
  • 22 Singh SP, Parmar SS, Raman K, Stenberg VI. Chem. Rev. 1981; 81: 175
  • 23 Kasmi-Mir S, Djafri A, Paquin L, Hamelin J, Rahmouni M. Molecules 2006; 11: 597
  • 24 Abdel Aziz HA, El-Zahabi HS. A, Dawood KM. Eur. J. Med. Chem. 2010; 45: 2427
  • 25 Optimized Procedure for the Synthesis of 5-Arylidene-2-aryliminothiazolidin-4-ones In a 10 mL reaction vial, the amine (0.5 mmol) was added to a solution of isothiocyanate (0.5 mmol) in absolute EtOH (1 mL). The formation of the thiourea was achieved either at r.t. or by irradiating the reaction mixture for the duration indicated for each compound at a maximum power of 90 W and 120 °C. Anhydrous NaOAc (61.5 mg, 1.5 equiv), chloroacetyl chloride (59.7 μL, 1.5 equiv), and aldehyde (1 equiv) were added successively. The reaction mixture was then irradiated for 20 min at a maximum power of 30 W and 120 °C. The precipitate was filtered and dissolved in CH2Cl2. The organic phase was washed with H2O and brine, dried over Na2SO4, and concentrated in vacuo. Either crystallization from EtOH or purification by flash chromatography afforded the corresponding 5-arylidene-2-aryliminothiazolidin-4-ones.
  • 26 Sarkis M, Tran DN, Kolb S, Miteva MA, Villoutreix BO, Garbay C, Braud E. Bioorg. Med. Chem. Lett. 2012; 22: 7345
  • 27 Bourahla K, Dercour A, Rahmouni M, Carreaux F, Bazureau JP. Tetrahedron Lett. 2007; 48: 5785
  • 28 Sing WT, Lee CL, Yeo SL, Lim SP, Sim MM. Bioorg. Med. Chem. Lett. 2001; 11: 91
  • 29 Selected Analytical Data Compound 1: pale yellow solid (106 mg, 45%); mp 143–145 °C. 1H NMR (250 MHz, CDCl3): δ = 3.81 (s, 3 H, CH3), 3.84 (s, 3 H, CH3), 3.88 (s, 3 H, CH3), 4.60 (s, 2 H, CH2), 5.04 (s, 2 H, CH2), 6.84 (d, 2 H, J = 6.2 Hz, ArH), 6.91 (d, 2 H, J = 6.5 Hz, ArH), 7.00 (d, 2 H, J = 6.5 Hz, ArH), 7.26 (d, 2 H, J = 6.2 Hz, ArH), 7.47 (d, 2 H, J = 6.5 Hz, ArH), 7.51 (d, 2 H, J = 6.5 Hz, ArH), 7.73 (s, 1 H, C=CH). 13C NMR (63 MHz, CDCl3): δ = 45.5, 55.2, 55.3, 55.4, 55.8, 113.7 (2 C), 113.8 (2 C), 114.5 (2 C), 118.8, 126.6, 128.6 (2 C), 128.8, 130.0, 130.5 (2 C), 131.3, 131.8 (2 C), 149.0, 158.6, 159.2, 160.7, 166.9. IR: ν = 2951, 2829, 1697, 1644, 1615, 1599, 1509, 1468, 1443, 1426, 1380, 1338, 1297, 1249, 1173, 1163, 1117, 1106, 1032 cm–1. ESI-HRMS: m/z calcd for C27H27N2O4S [M + H]+: 475.1692; found: 475.1707. Compound 2: yellow solid (134 mg, 55%); mp 169–170 °C. 1H NMR (250 MHz, CDCl3): δ = 2.54 (s, 3 H, CH3), 3.81 (s, 3 H, CH3), 3.84 (s, 3 H, CH3), 4.61 (s, 2 H, CH2), 5.05 (s, 2 H, CH2), 6.84 (d, 2 H, J = 6.5 Hz, ArH), 6.91 (d, 2 H, J = 6.5 Hz, ArH), 7.25–7.33 (m, 4 H, ArH), 7.47 (d, 2 H, J = 8.0 Hz, ArH), 7.71 (s, 1 H, C=CH). 13C NMR (63 MHz, DMSO-d 6): δ = 16.5, 47.1, 56.7, 56.8, 57.2, 115.1 (2 C), 115.3 (2 C), 121.8, 127.4 (2 C), 130.0 (2 C), 130.1, 131.0, 131.7 (2 C), 131.8, 131.9 (2 C), 132.5, 143.0, 150.2, 160.1, 160.6, 168.1. IR: ν = 2840, 1698, 1646, 1610, 1585, 1513, 1497, 1467, 1423, 1403, 1380, 1331, 1295, 1248, 1171, 1162, 1092, 1072, 1041, 1030 cm–1. ESI-HRMS: m/z calcd for C27H27N2O3S2 [M + H]+: 491.1463; found: 491.1440. Compound 13: yellow solid (130 mg, 51%); mp 141–143 °C. 1H NMR (250 MHz, CDCl3): δ = 3.81 (s, 3 H, OCH3), 3.84 (s, 3 H, OCH3), 4.66 (s, 2 H, C=NCH2), 5.05 (s, 2 H, NCH2), 6.84–6.94 (m, 6 H, ArH), 7.29–7.55 (m, 8 H, ArH and C=CH), 7.78 (d, 2 H, J = 6.8 Hz, ArH). 13C NMR (63 MHz, CDCl3): δ = 45.5, 55.2, 55.3, 55.5, 108.3, 113.7 (2 C), 113.8 (2 C), 116.2, 118.3, 119.0, 124.3 (2 C), 128.5, 128.7 (2 C), 128.9 (2 C), 129.0, 129.6, 130.3, 130.4 (2 C), 131.4, 149.7, 156.9, 158.7, 159.1, 166.4. IR: ν = 2924, 2851, 1728, 1697, 1678, 1647, 1608, 1510, 1439, 1415, 1379, 1328, 1289, 1244, 1163, 1110, 1088, 1029 cm–1. ESI-HRMS: m/z calcd for C30H27N2O4S [M + H]+: 511.1685; found: 511.1694. Compound 21: yellow solid (52 mg, 29%); mp 68 °C. 1H NMR (250 MHz, CDCl3): δ = 0.94–1.01 (m, 6 H, 2 × CH3), 1.34–1.49 (m, 4 H, 2 × CH2), 1.63–1.74 (m, 4 H, 2 × CH2), 2.54 (s, 3 H, SCH3), 3.42 (t, 2 H, J = 6.8 Hz, C=NCH2), 3.87 (t, 2 H, J = 7.2 Hz, NCH2), 7.30 (d, 2 H, J = 8.5 Hz, Har), 7.47 (d, 2 H, J = 8.5 Hz, Har), 7.66 (s, 1 H, C=CH). 13C NMR (63 MHz, CDCl3): δ = 13.7, 13.9, 15.1, 20.0, 20.5, 29.5, 32.8, 42.8, 52.9, 120.9, 126.0 (2 C), 128.6, 130.2 (2 C), 130.6, 141.1, 147.3, 166.9. IR: ν = 2952, 2851, 2817, 1706, 1641, 1602, 1586, 1490, 1429, 1381, 1295, 1261, 1198, 1116, 1090, 1009 cm–1. ESI-HRMS: m/z calcd for C19H27N2OS2 [M + H]+: 363.1559; found: 363.1559