Synlett 2014; 25(6): 835-842
DOI: 10.1055/s-0033-1340844
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetic Nano Fe3O4 Catalyzed Solvent-Free Stereo- and Regioselective ­Aminolysis of Epoxides by Amines; a Green Method for the Synthesis of β-Amino Alcohols

Amit Kumar
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Ramarao Parella
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Srinivasarao Arulananda Babu*
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 11 December 2013

Accepted after revision: 28 January 2014

Publication Date:
06 March 2014 (online)


Abstract

We report the use of magnetic nano Fe3O4 as a mild heterogeneous catalyst for the aminolysis of epoxides with amines. The approach constitutes a green method for the formation of a variety of β-amino alcohols with very high stereo- and regioselectivity under solvent-free and ambient reaction conditions. The aminolysis of chiral epoxides with amines gave the corresponding chiral β-amino alcohols with complete inversion of stereochemistry. The magnetic nano Fe3O4 catalyst can be easily recovered and recycled.

Supporting Information

 
  • References and Notes

    • 3a Connolly ME, Kersting F, Bollery CT. Prog. Cardiovasc. Dis. 1976; 19: 203
    • 3b Ruediger E, Martel A, Meanwell N, Solomon C, Turmel B. Tetrahedron Lett. 2004; 45: 739
    • 3c Sekine A, Ohshima T, Shibasaki M. Tetrahedron 2002; 58: 75
    • 3d Zhu S, Meng L, Zhang Q, Wei L. Bioorg. Med. Chem. Lett. 2006; 16: 1854
    • 3e Moore WJ, Luzzzio FA. Tetrahedron Lett. 1995; 36: 6599
    • 3f Yamaguchi T, Harada N, Ozaki K, Hashiyama T. Tetrahedron Lett. 1998; 39: 5575
    • 3g Wu MH, Jacobsen EN. Tetrahedron Lett. 1997; 38: 1693
    • 3h Corey EJ, Zhang F. Angew. Chem. Int. Ed. 1999; 38: 1931
    • 3i Li G, Chang HT, Sharpless KB. Angew. Chem. Int. Ed. Engl. 1996; 35: 451
    • 3j Cossy J, Gomez Pardo D, Dumas C, Mirguet O, Dechamps I, Metro T.-X, Burger B, Roudeau R, Appenzeller J, Cochi A. Chirality 2009; 21: 850
    • 5a Williams DB. G, Lawton M. Tetrahedron Lett. 2006; 47: 6557
    • 5b Procopio A, Gaspari M, Nardi M, Oliverio M, Rosati O. Tetrahedron Lett. 2008; 49: 2289
    • 5c Sekar G, Sing VK. J. Org. Chem. 1999; 64: 287
    • 5d Rodríguez JR, Navarro A. Tetrahedron Lett. 2004; 45: 7495
    • 5e Ollevier T, Lavie-Compin G. Tetrahedron Lett. 2002; 43: 7891
    • 5f Singh MC, Peddinti RK. Tetrahedron Lett. 2007; 48: 7354
    • 5g Azizi N, Saidi MR. Org. Lett. 2005; 7: 3649
    • 5h Sundararajan G, Vijayakrishna K, Varghese B. Tetrahedron Lett. 2004; 45: 8253
    • 5i Yadav JS, Reddy AR, Narsaiah AV, Reddy BV. S. J. Mol. Catal. A: Chem. 2007; 261: 207
    • 5j Kumar SR, Leelavathi P. J. Mol. Catal. A: Chem. 2007; 266: 65
    • 5k Danafar H, Yadollahi B. Catal. Commun. 2009; 10: 842
    • 5l Vijender M, Kishore P, Narender P, Satyanarayana B. J. Mol. Catal. A: Chem. 2007; 266: 290
    • 5m Robinson MW. C, Timms DA, Williams SM, Graham AE. Tetrahedron Lett. 2007; 48: 6249
    • 5n Chimni SS, Bala N, Dixit VA, Bharatam PV. Tetrahedron 2010; 66: 3042
    • 5o Reddy BM, Patil MK, Reddy BT. Catal. Commun. 2008; 9: 950
    • 5p Desai H, D’Souza BR, Foether D, Johnson BF, Lindsay HA. Synthesis 2007; 902
    • 5q Kokubo M, Naito T, Kobayashi S. Tetrahedron 2010; 66: 1111
    • 5r Aramesh N, Yadollahi B, Mirkhani V. Inorg. Chem. Commun. 2013; 28: 37
    • 5s Kureshy RI, Singh S, Khan Noor-ul H, Abdi SH. R, Suresh E, Jasra RV. J. Mol. Catal. A: Chem. 2007; 264: 162
    • 5t Pathare SP, Akamanchi KG. Tetrahedron Lett. 2013; 54: 6455
    • 5u Kumar A, Srinivas D. J. Catal. 2012; 293: 126
    • 5v Righi G, Mantineo A, Suber L, Mari A. Synlett 2012; 23: 1947
    • 5w Lu H.-F, Sun L.-L, Le W.-J, Yang F.-F, Zhou J.-T, Gao Y.-H. Tetrahedron Lett. 2012; 53: 4267
    • 5x Zhao P.-Q, Xu L.-W, Xia C.-G. Synlett 2004; 846
    • 5y Bonollo S, Fringuelli F, Pizzo F, Vaccaro L. Synlett 2007; 2683
    • 5z Chouhan M, Senwar KR, Sharma R, Grover V, Nair VA. Green Chem. 2011; 13: 2553
    • 6a Tan N, Yin S, Li Y, Qiu R, Meng Z, Song X, Luo S, Au C.-T, Wong W.-Y. J. Organomet. Chem. 2011; 696: 1579
    • 6b Firouzabadi H, Iranpoor N, Khoshnood A. J. Mol. Catal. A: Chem. 2007; 274: 109
    • 6c Bhanushali MJ, Nandurkar NS, Bhor MD, Bhanage BM. Tetrahedron Lett. 2008; 49: 3672
    • 6d Mancilla G, Femenía-Ríos M, Macías-Sánchez AJ, Collado IG. Tetrahedron 2008; 64: 11732
    • 6e Bonollo S, Fringuelli F, Pizzo F, Vaccaro L. Green Chem. 2006; 8: 960
    • 6f Pujala B, Rana S, Chakraborti AK. J. Org. Chem. 2011; 76: 8768
    • 6g Khaksar S, Heydari A, Tajbakhsh M, Bijanzadeh HR. J. Fluorine Chem. 2010; 131: 106
    • 6h Mojtahedi MM, Abaee MS, Hamidi V. Catal. Commun. 2007; 8: 1671
    • 6i Procopio A, Gaspari M, Nardi M, Oliverio M, Rosati O. Tetrahedron Lett. 2008; 49: 2289
    • 7a Babu SG, Karvembu R. Catal. Surv. Asia 2013; 17: 156
    • 7b Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J.-M. Chem. Rev. 2011; 111: 3036
    • 7c Shylesh S, Schünemann V, Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428
    • 8a Parella R, Naveen Kumar A, Babu SA. Tetrahedron Lett. 2013; 54: 1738
    • 8b Parella R, Naveen Babu SA. Catal. Commun. 2012; 29: 118
    • 9a Generally, the reactions were carried out by using 1 (1.5 mmol), amine 2 (1 mmol) and nano Fe3O4 (10 mol%) without solvent and open to the atmosphere for 20 h. See the respective tables for individual entries.
    • 9b General Experimental Procedure: Epoxide (1.5–2 mmol), amine (1.0 mmol) and nano Fe3O4 (10 mol%, 23 mg, particle size = <50 nm) were stirred at r.t. open to the atmosphere for 20 h. EtOAc (1–2 mL) was then added and the mixture was stirred for 1–2 min. A magnet was then externally applied to the flask and the catalyst was allowed to accumulate at the walls of the flask; the resulting clear solution was transferred to a fresh flask by using a pipette. This step was repeated twice more, and the combined organic layers were dried over anhydrous Na2SO4, filtered, and the solvent evaporated. Purification by column chromatography on silica gel (EtOAc–hexanes, 20:80) gave the pure products.
    • 9c All the reactions were carried out at r.t (range 28–32 °C) unless otherwise mentioned.
    • 9d When one of the substrates (epoxide or amine) was a solid, to facilitate homogeneous stirring, the reaction was carried out by using 1 mmol of the solid sample and the other corresponding liquid sample in excess (2 mmol) and the yield was calculated based on the limiting reagent.
  • 10 All the reactions were regioselective and gave only a single regioisomer. We were not able to isolate any of the corresponding minor regioisomers for characterization. The identity of all compounds obtained in this work was established by comparison of their spectroscopic data with reported data and we also confirmed the structure of representative regioisomers from the X-ray structures of 5c, 5e, 5h, and 5k. Their crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (5c; CCDC-976219, 5e; CCDC-976220, 5h; CCDC-976221 and 5k; CCDC-976222). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.