Synlett 2014; 25(6): 813-816
DOI: 10.1055/s-0033-1340793
letter
© Georg Thieme Verlag Stuttgart · New York

Oxidative Chlorination of Activated Methylene Compounds with Sodium Chloride

Klaus-Daniel Umland
a   Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany   Fax: +49(202)4392648   Email: sfkirsch@uni-wuppertal.de
b   Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
,
Camilla Mayer
b   Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
,
Stefan F. Kirsch*
a   Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany   Fax: +49(202)4392648   Email: sfkirsch@uni-wuppertal.de
› Author Affiliations
Further Information

Publication History

Received: 19 December 2013

Accepted after revision: 17 January 2014

Publication Date:
05 March 2014 (online)


Abstract

An operationally simple protocol for the direct chlorination of 1,3-dicarbonyls (and related compounds such as α-cyano ­ketones) is described. The procedure relies on mild conditions using IBX–SO3K as the stoichiometric oxidizing agent and the ubiquitous sodium chloride. The presence of a phase-transfer catalyst is supportive to obtain good yields in a THF–water mixture.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Bi H.-P, Guo L.-N, Duan X.-H, Gou F.-R, Huang S.-H, Liu X.-Y, Liang Y.-M. Org. Lett. 2007; 9: 397
    • 1b Loy RN, Jacobsen EN. J. Am. Chem. Soc. 2009; 131: 2786
    • 1c Yoo W.-J, Miyamura H, Kobayashi S. J. Am. Chem. Soc. 2011; 133: 3095
    • 1d Mekonnen A, Carlson R. J. Org. Chem. 2006; 2005
    • 1e Tereda M, Sorimachi K, Uraguchi D. Synlett 2006; 133
    • 1f Reddy DS, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2008; 47: 164
    • 2a Meshram HM, Reddy PN, Vishnu P, Sadashiv K, Yadav JS. Tetrahedron Lett. 2006; 47: 991
    • 2b Mei Y, Bentley PA, Du J. Tetrahedron Lett. 2008; 49: 3802
    • 2c Fletcher D, Ablenas FJ, Hopkinson AC, Lee-Ruff E. Tetrahedron Lett. 1986; 27: 4853
    • 2d Dechoux L, Ebel M, Jung L, Stambach JF. J. Org. Chem. 1993; 34: 7405
    • 2e Tona M, Guardiola M, Fajari L, Messeguer A. Tetrahedron 1995; 51: 10041
    • 3a Yang D, Yan Y.-L, Lui B, Zhang C. J. Org. Chem. 2002; 67: 7429
    • 3b Shibatomi K, Soga Y, Narayama A, Fujisawa I, Iwasa S. J. Am. Chem. Soc. 2012; 134: 9836
    • 3c Tucker JW, Narayanam JM. R, Jagan MR, Krabbe SW, Stephenson CR. J. Org. Lett. 2010; 12: 368
    • 3d Curran DP, Chen M.-H, Spletzer E, Seong CM, Chang C.-T. J. Am. Chem. Soc. 1989; 111: 8872
    • 4a Atkins EF, Dabbs S, Guy RG, Mahomed AA, Mountford P. Tetrahedron 1994; 50: 7253
    • 4b Shi X.-X, Dai L.-X. J. Org. Chem. 1993; 58: 4596
    • 4c Nobrega JA, Goncalves SM. C, Peppe C. Synth. Commun. 2002; 32: 3711
    • 4d Meketa ML, Mahajan YR, Weinreb SM. Tetrahedron Lett. 2005; 46: 4799
    • 4e Shimakoshi H, Abiru M, Izumi S.-I, Hisaeda Y. Chem. Commun. 2009; 6427
    • 4f Reddy DS, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2008; 47: 164
    • 4g De Kimpe N, De Cock W, Schamp N. Synthesis 1987; 188
    • 4h Akula R, Galligan MJ, Ibrahim H. Synthesis 2011; 347
    • 4i Barluenga J, Martinez-Gallo JM, Najera C, Yus M. Synthesis 1986; 678
    • 4j Bekaert A, Barberan O, Gervais M, Brion J.-D. Tetrahedron Lett. 2000; 41: 2903
    • 4k Jereb M, Zupan M, Stavber S. Chem. Commun. 2004; 2614
    • 5a Kim J.-J, Kweon D.-H, Cho S.-D, Kim H.-K, Lee S.-G, Yoon Y.-J. Synlett 2006; 194
    • 5b Khan AT, Goswami P, Choudhury LH. Tetrahedron Lett. 2006; 47: 2751
    • 5c Ranu BC, Adak L, Banerjee S. Aust. J. Chem. 2007; 60: 358
    • 5d Dieter RK, Nice LE, Velu SE. Tetrahedron Lett. 1996; 37: 2377
    • 5e For oxidative chlorination in nature, see: Neumann CS, Fujimori DG, Walsh CT. Chem. Biol. 2008; 15: 99

      For the use of hypervalent iodine reagents as oxidants, see:
    • 6a Akula R, Galligan M, Ibrahim H. Chem. Commun. 2009; 6991
    • 6b Lee JC, Park JY, Yoon SY, Bae YH, Lee SJ. Tetrahedron Lett. 2004; 45: 191
    • 6c Coats SJ, Wassermann HH. Tetrahedron Lett. 1995; 36: 7735
    • 6d Braddock DC, Cansell G, Hermitage SA. Synlett 2004; 461
    • 6e Ibrahim H, Kleinbeck F, Togni A. Helv. Chim. Acta 2004; 87: 605
    • 6f Galligan MJ, Akula R, Ibrahim H. Org. Lett. 2014; 16: 600
    • 7a Klimczyk S, Huang X, Farès C, Maulide N. Org. Biomol. Chem. 2012; 10: 4327
    • 7b Zhou ZS, Li L, He XH. Chin. Chem. Lett. 2012; 23: 1213

      For reviews, see:
    • 8a Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
    • 8b Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
    • 9a Kirsch SF. J. Org. Chem. 2005; 70: 10210
    • 9b Crone B, Kirsch SF. Chem. Commun. 2006; 764
    • 9c Duschek A, Kirsch SF. Chem. Eur. J. 2009; 15: 10713
  • 10 Harschneck T, Hummel S, Kirsch SF, Klahn P. Chem. Eur. J. 2012; 18: 1187

    • For related azidation protocols, see inter alia:
    • 11a Magnus P, Hulme C, Weber W. J. Am. Chem. Soc. 1994; 116: 4501
    • 11b Tohma H, Egi M, Ohtsubo M, Wantanabe H, Takizawa S, Kita Y. Chem. Commun. 1998; 173
    • 11c Chen D.-J, Chen Z.-C. Tetrahedron Lett. 2000; 41: 7361
    • 11d Magnus P, Lacour J, Weber W. Synthesis 1998; 547
    • 11e Vita MV, Waser J. Org. Lett. 2013; 15: 3246
  • 12 IBX–SO3K does not react with primary and secondary alcohols at r.t. Even at 60 °C, alkyl-substituted alcohols remain untouched while secondary benzylic and propargylic alcohols are prone to oxidation.

    • For leading reviews on phase-transfer catalysis, see:
    • 13a Novacek J, Waser M. Eur. J. Org. Chem. 2013; 637
    • 13b Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
    • 13c Takashi O, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 14a Ohmatsu K, Ito M, Kunieda T, Ooi T. Nat. Chem. 2012; 4: 473
    • 14b Harel T, Rozen S. J. Org. Chem. 2007; 72: 6500
    • 14c Alvarez-Ibarra C, Csakye AG, de la Oliva CG. J. Org. Chem. 2000; 65: 3544
    • 14d Shirakawa S, Ota K, Shogo SJ, Maruoka K. Org. Biomol. Chem. 2012; 10: 5753
    • 14e Shirakawa S, Terao SJ, He R, Maruoka K. Chem. Commun. 2011; 47: 10557
    • 14f Ji C.-B, Liu Y.-L, Cao Z.-Y, Zhou J, Zhang Y.-Y. Tetrahedron Lett. 2011; 52: 6118
  • 15 General Procedure: The carbonyl substrate (1 equiv) was dissolved in a mixture of THF and aq 1 M NaCl solution (1:2, 0.3 M regarding substrate). Then, MeOc3NCl (20 mol%) and IBX–SO3K (3 equiv) were added and the suspension was heated to 50 °C for 24 h. After the suspension was cooled to r.t., the organic phase and the aqueous phase were separated. The aqueous phase was extracted with Et2O (3 ×). The combined organic phase was washed with aq sat. NaHCO3 solution and dried over Na2SO4. After concentration, the residue was purified by flash chromatography. Ethyl 1-Chloro-2-oxocyclohexanecarboxylate (ref. 6a): Following the general procedure, 4a was obtained from 2a (25.0 mg, 147 μmol) in 57% yield (17.2 mg, 84.0 μmol) as a colorless oil (flash chromatography with cyclohexane–Et2O, 95:5); Rf 0.35 (cyclohexane–Et2O, 9:1). 1H NMR (400 MHz, CDCl3): δ = 4.29 (qd, J = 7.1, 0.6 Hz, 2 H), 2.74–2.89 (m, 2 H), 2.39–2.46 (m, 1 H), 2.09–2.14 (m, 1 H), 1.81–2.00 (m, 3 H), 1.68–1.80 (m, 1 H), 1.31 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 199.8, 167.4, 73.6, 63.0, 39.8, 39.0, 26.8, 22.3, 14.0. HRMS (ESI): m/z [M + Na+] calcd for C9H13ClNaO3 +: 227.0445; found: 227.0451.