Synlett 2014; 25(09): 1191-1196
DOI: 10.1055/s-0033-1340738
synpacts
© Georg Thieme Verlag Stuttgart · New York

Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Alkene Hydrofunctionalization

David A. Nicewicz*
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA   Fax: +1(919)9622388   Email: nicewicz@unc.edu
,
David S. Hamilton
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA   Fax: +1(919)9622388   Email: nicewicz@unc.edu
› Author Affiliations
Further Information

Publication History

Received: 02 December 2013

Accepted after revision: 13 January 2014

Publication Date:
05 March 2014 (online)

Abstract

The development of a general catalyst system for the ­direct anti-Markovnikov hydrofunctionalization of alkenes is pres­ented. A unique catalyst system comprised of an acridinium photooxidant and a hydrogen atom transfer reagent allows for a range of alkene anti-Markovnikov hydrofunctionalization reactions including hydroalkoxylation, hydroamination, and hydroacetoxylation.

 
  • References and Notes

    • 1a Beller M, Seavad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 1b Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 1c Hintermann L. Top. Organomet. Chem. 2010; 31: 123
  • 2 Wissermel K, Arpe H.-J. Industrial Organic Chemistry . 5th ed. Wiley-VCH; Weinheim: 2010
    • 3a Trost BM. Science 1991; 254: 1471
    • 3b Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 4a Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
    • 4b Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 2702
  • 5 Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
  • 6 Dong G, Teo P, Wickens ZK, Grubbs RH. Science 2011; 333: 1609
  • 7 Catalytic, anti-Markovnikov addition reactions of nucleophiles to olefins has been described as a ‘top-10 challenge’ for catalysis, see: Haggin J. Chem. Eng. News 1993; 71: 23
    • 8a Neunteufel RA, Arnold DR. J. Am. Chem. Soc. 1973; 95: 4080
    • 8b Arnold DR, Chan MS. W, McManus KA. Can. J. Chem. 1995; 74: 2143
    • 8c Mangion D, Arnold DR. Acc. Chem. Res. 2002; 35: 297
    • 9a Gassman PG, Bottorff KJ. Tetrahedron Lett. 1987; 28: 5449
    • 9b Gassman PG, Bottorff KJ. J. Am. Chem. Soc. 1987; 109: 7547
    • 10a Inoue Y, Okano T, Yamasaki N, Tai A. J. Chem. Soc., Chem. Commun. 1993; 718
    • 10b Asaoka S, Kitazawa T, Wada T, Inoue YJ. J. Am. Chem. Soc. 1999; 121: 8486
    • 10c Takehara Y, Ohta N, Shiraishi S, Asaoka S, Wada T, Inoue Y. J. Photochem. Photobiol., A 2001; 145: 53
    • 10d Asaoka S, Wada T, Inoue Y. J. Am. Chem. Soc. 2003; 125: 3008
    • 11a Mizuno K, Nakanishi I, Ichinose N, Otsuji Y. Chem. Lett. 1989; 41: 1095
    • 11b Mizuno K, Tamai T, Nishiyama T, Tani K, Sawasaki M, Otsuji Y. Angew. Chem. Int. Ed. Engl. 1994; 33: 2113
  • 12 For a general review on the reactivity patterns of alkene cation-radicals, see: Schmittel M, Burghart A. Angew. Chem. Int. Ed. Engl. 1997; 36: 2550

    • For hydrofunctionalizations using alkene cation-radical surrogates, see:
    • 13a Crich D, Ranganathan K, Neelamkavil S, Huang X. J. Am. Chem. Soc. 2005; 125: 7942
    • 13b Crich D, Ranganathan K. J. Am. Chem. Soc. 2005; 127: 9924
    • 13c Crich D, Shirai M, Brebion F, Rumthao S. Tetrahedron 2006; 62: 6501
    • 13d Crich D, Brebion F, Suk D.-H. Radicals in Synthesis I, In Top. Curr. Chem. 2006; 263: 1
    • 14a Sutterer A, Moeller KD. J. Am. Chem. Soc. 2000; 122: 5636
    • 14b Moeller KD. Synlett 2009; 1208
    • 14c Campbell JM, Xu H, Moeller KD. J. Am. Chem. Soc. 2012; 134: 18338
    • 14d Perkins RJ, Xu H, Campbell JM, Moeller KD. Beilstein J. Org. Chem. 2013; 9: 1630
    • 14e Smith JA, Moeller KD. Org. Lett. 2013; 15: 5818
  • 15 For a comprehensive accounting of reduction potentials of single-electron oxidants, see: Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877

    • Several reviews have been written on transition-metal photoredox catalysis, see:
    • 16a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 16b Yoon TP, Ischay MA, Du J. Nat. Chem. 2012; 2: 527
    • 16c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322

      Such lifetimes tend to be on the order of nanoseconds; specific values can be found in the following references:
    • 17a Ohkubo K, Suga K, Morikawa K, Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 12850
    • 17b Chang YC, Chang PW, Wang CM. J. Phys. Chem. B 2003; 107: 1628
  • 18 For initial disclosure, see: Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600

    • The existence of an exceedingly long-lived charge transfer state for 8 has been a matter of some contention. For a full perspective of this debate, see:
    • 19a Benniston AC, Harriman A, Li P, Rostron JP, van Ramesdonk HJ, Groeneveld MM, Zhang H, Verhoeven JW. J. Am. Chem. Soc. 2005; 127: 16054
    • 19b Ohkubo K, Kotani H, Fukuzumi S. Chem. Commun. 2005; 4520
    • 19c Verhoeven JW, van Ramesdonk HJ, Zhang H, Groeneveld MM, Benniston AC, Harriman A. Int. J. Photoenergy 2005; 7: 103
    • 19d Benniston AC, Harriman A, Li P, Rostron JP, Verhoeven JW. Chem. Commun. 2005; 2701
    • 19e Benniston AC, Harriman A, Verhoeven JW. Phys. Chem. Chem. Phys. 2008; 10: 5156
    • 19f Fukuzumi S, Kotani H, Ohkubo K. Phys. Chem. Chem. Phys. 2008; 10: 5159
    • 19g Benniston AC, Elliott KJ, Harrington RW, Clegg W. Eur. J. Org. Chem. 2009; 253
    • 19h Hoshino M, Uekusa H, Tomita A, Koshihara S, Sato T, Nozawa S, Adachi S, Ohkubo K, Kotani H, Fukuzumi S. J. Am. Chem. Soc. 2012; 134: 4569

      Regardless of their photophysical properties, acridinium-derived photocatalysts have proven useful as photooxidants capable of the catalysis of a multitude of organic transfor-mations. For examples, see:
    • 20a Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
    • 20b Ohkubo K, Nanjo T, Fukuzumi S. Bull. Chem. Soc. Jpn. 2006; 79: 1489
    • 20c Ohkubo K, Mizushima K, Iwata R, Souma K, Suzuki N, Fukuzumi S. Chem. Commun. 2009; 46: 601
    • 20d Ohkubo K, Fujimoto A, Fukuzumi S. Chem. Commun. 2011; 47: 8515
    • 20e Ohkubo K, Mizushima K, Iwata R, Fukuzumi S. Chem. Sci. 2011; 2: 715
    • 20f Fukuzumi S, Ohkubo K. Chem. Sci. 2013; 4: 561
  • 21 Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
  • 22 Bordwell FG, Cheng JP, Ji GZ, Satish AV, Zhang X. J. Am. Chem. Soc. 1991; 113: 9790
  • 23 Estimated from the oxidation potential of 17, see: Ohkita M, Suzuki T, Tsuji T, Yamada M. Heterocycles 2001; 54: 387
  • 24 Nguyen TM, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
  • 25 Perkowski AJ, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 10334