Synlett 2014; 25(5): 665-670
DOI: 10.1055/s-0033-1340623
letter
© Georg Thieme Verlag Stuttgart · New York

The Beckmann Rearrangement Executed by Visible-Light-Driven Generation of Vilsmeier–Haack Reagent

Vishnu P. Srivastava
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Arvind K. Yadav
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 20 October 2013

Accepted: 17 December 2013

Publication Date:
15 January 2014 (online)


Abstract

A new and efficient approach for the Beckmann rearrangement is reported. The protocol involves eosin Y catalyzed, visible-light-mediated in situ formation of the Vilsmeier–Haack reagent from CBr4 and a catalytic amount of DMF for activation of ketoximes at room temperature. The method is operationally simple and avoids the need for any corrosive, water-sensitive reagents and elevated temperatures.

Supporting Information

 
  • References and Notes

    • 2a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 2b Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 3a Dai C, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2011; 3: 140
    • 3b Konieczynska MD, Dai C, Stephenson CR. J. Org. Biomol. Chem. 2012; 10: 4509
    • 4a Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
    • 4b Rovelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 5a Labat F, Ciofini I, Hratchain HP, Frisch M, Raghavachari K, Adamo C. J. Am. Chem. Soc. 2009; 131: 14290
    • 5b Jhonsi MA, Kathiravan A, Renganathan R. J. Mol. Struct. 2009; 921: 279
    • 6a Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 6b Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
    • 6c Majek M, von Wangelin AJ. Chem. Commun. 2013; 49: 5507
    • 7a Hari DP, König B. Org. Lett. 2011; 13: 3852
    • 7b Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
    • 7c Srivastava VP, Yadav AK, Yadav LD. S. Synlett 2013; 24: 465
    • 7d Yadav AK, Srivastava VP, Yadav LD. S. New J. Chem. 2013; 37: 4119
    • 7e Fidaly K, Ceballos C, Falguières A, Veitia MS.-I, Guy A, Ferroud C. Green Chem. 2012; 14: 1293
    • 7f Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 8a Beckmann E. Ber. Dtsch. Chem. Ges. 1886; 19: 988
    • 8b Smith MB, March J In Advanced Organic Chemistry . John Wiley and Sons; New York: 2001. 5th ed. 1415 ; and references cited therein
    • 8c Arisawa M, Yamaguchi M. Org. Lett. 2001; 3: 311
    • 8d Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
    • 9a Xu F, Wang N.-G, Tian Y.-P, Chen Y.-M, Liu W.-C. Synth. Commun. 2012; 42: 3532
    • 9b Augustine JK, Kumar R, Bombrun A, Mandal AB. Tetrahedron Lett. 2011; 52: 1074
    • 9c Srivastava VP, Patel R, Garima Yadav LD. S. Chem. Commun. 2010; 46: 5808
    • 9d Yadav LD. S, Patel R, Srivastava VP. Synthesis 2010; 1771
    • 9e Pi H.-J, Dong J.-D, An N, Du W, Deng W.-P. Tetrahedron 2009; 65: 7790
    • 9f Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
    • 9g Zhu M, Cha C, Deng W.-P, Shi X.-X. Tetrahedron Lett. 2006; 47: 4861
    • 9h Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. 2005; 127: 11240
    • 10a Vanos CM, Lambert TH. Chem. Sci. 2010; 1: 705
    • 10b An N, Tian B.-X, Pi H.-J, Eriksson LA, Deng W.-P. J. Org. Chem. 2013; 78: 4297
    • 10c Tian B.-X, An N, Deng W.-P, Eriksson LA. J. Org. Chem. 2013; 78: 6782
    • 11a Rai A, Yadav LD. S. Eur. J. Org. Chem. 2013; 1889
    • 11b Singh AK, Chawla R, Rai A, Yadav LD. S. Chem. Commun. 2012; 48: 3766
    • 11c Singh S, Yadav LD. S. Org. Biomol. Chem. 2012; 10: 3932
    • 11d Rai A, Singh AK, Singh P, Yadav LD. S. Tetrahedron Lett. 2011; 52: 1354
    • 11e Rai A, Yadav LD. S. Tetrahedron Lett. 2010; 51: 4054
  • 12 Hepburn DR, Hudson HR. J. Chem. Soc., Perkin Trans. 1 1976; 754
  • 13 General Procedure for the Visible-Light-Driven Beckmann Rearrangement A mixture of ketoxime 1 (1.0 mmol), CBr4 (2.0 equiv), eosin Y (2 mol%), DMF (20 mol%), and MeCN (3 mL) was taken in an oven-dried round-bottom flask and irradiated with green LEDs while stirring under a nitrogen atmosphere. After completion of the reaction as indicated by TLC, it was quenched with sat. aq NaHCO3 (10 mL) and extracted with EtOAc (3 × 10 mL). The organic phase was dried over anhydrous MgSO4 and concentrated under reduced pressure to yield the crude product, which was purified by silica gel column chromatography (EtOAc–hexane) to give the corresponding amide 2 in high yield. All the products are known compounds and were characterized by comparison of their mp, TLC, 1H NMR, 13C NMR, and MS data with authentic samples obtained commercially or prepared by literature methods.7d,8d,9c,10a,14 The characterization data of the synthesized compounds 2 are summarized in the Supporting Information with relevant references.
    • 14a Narahari SR, Reguri BR, Mukkanti K. Tetrahedron Lett. 2011; 52: 4888
    • 14b Küllertz G, Fischer G, Barth A. Tetrahedron 1976; 32: 759
    • 14c Luca LD, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272