Synthesis 2014; 46(05): 596-599
DOI: 10.1055/s-0033-1340557
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

A Convenient Preparation of 9H-Carbazole-3,6-dicarbonitrile and 9H-Carbazole-3,6-dicarboxylic Acid

Łukasz J. Weseliński
Functional Material Design, Discovery and Development (FMD3), Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia   Fax: +966(2)8082778   Email: [email protected]
,
Ryan Luebke
Functional Material Design, Discovery and Development (FMD3), Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia   Fax: +966(2)8082778   Email: [email protected]
,
Mohamed Eddaoudi*
Functional Material Design, Discovery and Development (FMD3), Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia   Fax: +966(2)8082778   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 27 October 2013

Accepted after revision: 11 December 2013

Publication Date:
23 January 2014 (online)


Abstract

A catalytic, high yielding and scalable procedure for the synthesis of 9H-carbazole-3,6-dicarbonitrile has been developed. Subsequent hydrolysis of the dinitrile in the presence of a catalytic copper species (i.e., CuI) yields 9H-carbazole-3,6-dicarboxylic acid. Both compounds are versatile and fine-tunable organic building blocks and therefore offer potential in material science, medicinal and supramolecular chemistry.

 
  • References

    • 1a Nouar F, Eckert J, Eubank JF, Forster P, Eddaoudi M. J. Am. Chem. Soc. 2009; 131: 2864
    • 1b Suh MP, Park HJ, Prasad TK, Lim D.-W. Chem. Rev. 2012; 112: 782
    • 1c Nugent P, Belmabkhout Y, Burd SD, Cairns AC, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ. Nature 2013; 495: 80
    • 1d Li J.-R, Sculley J, Zhou H.-C. Chem. Rev. 2012; 112: 869
    • 1e Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M. J. Am. Chem. Soc. 2008; 130: 12639
    • 1f Yoon M, Srirambalaji R, Kim K. Chem. Rev. 2012; 112: 1196
    • 1g Liu Y, Kravtsov VCh, Larsen R, Eddaoudi M. Chem. Commun. 2006; 1488
    • 1h Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem. Rev. 2012; 112: 1105
  • 2 Eubank JF, Nouar F, Luebke R, Cairns AJ, Wojtas L, Alkordi M, Bousquet T, Hight MR, Eckert J, Embs JP, Georgiev PA, Eddaoudi M. Angew. Chem. Int. Ed. 2012; 51: 10099

    • For selected recent reviews, see:
    • 3a Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 3b Knölker H.-J. Curr. Org. Synth. 2004; 1: 309
    • 3c Knölker H.-J, Reddy KR In The Alkaloids . Vol. 65. Cordell GA. Academic Press; Amsterdam: 2008: 1-430
    • 3d Schmidt AW, Reddy KR, Knölker HJ. Chem. Rev. 2012; 112: 3193
  • 5 Li J.-R, Timmons DJ, Zhou H.-C. J. Am. Chem. Soc. 2009; 131: 6368
    • 6a Li J.-R, Zhou H.-C. Angew. Chem. Int. Ed. 2009; 48: 8465
    • 6b Li J.-R, Yakovenko AA, Lu W, Timmons DJ, Zhuang W, Yuan D, Zhou H.-C. J. Am. Chem. Soc. 2010; 132: 17599
  • 7 Lu W, Yuan D, Makal TA, Li J.-R, Zhou H.-C. Angew. Chem. Int. Ed. 2012; 51: 1580
  • 8 Stoeck U, Krause S, Bon V, Senkovska I, Kaskel S. Chem. Commun. 2012; 48: 10841
  • 9 Lu W, Yuan D, Makal TA, Wei Z, Li J.-R, Zhou H.-C. Dalton Trans. 2013; 42: 1708
  • 10 Tian Y.-P, Zhu Y.-M, Zhou H.-P, Wang P, Wu J.-Y, Tao X.-T, Jiang M.-H. Eur. J. Inorg. Chem. 2007; 345
    • 11a Lonergan DG, Deslongschamps G. Tetrahedron Lett. 1998; 39: 7861
    • 11b Xu D, Liu X, Lu R, Xue P, Zhang X, Zhou H, Jia J. Org. Biomol. Chem. 2011; 9: 1523
    • 12a Nagai Y, Haung C.-C. Bull. Chem. Soc. Jpn. 1966; 39: 650
    • 12b Meng H, Chen Z.-K, Liu X.-L, Lai Y.-H, Chua S.-J, Huang W. Phys. Chem. Chem. Phys. 1999; 1: 3123
    • 12c Shi H.-p, Cheng Y, Jing W.-j, Chao J.-B, Fang L, Dong X, Dong C. Spectrochim. Acta, Part A 2010; 75: 525
    • 12d Chen H.-F, Chi L.-C, Hung W.-Y, Chen W.-J, Hwu T.-Y, Chen Y.-H, Chou S.-H, Mondal E, Liu Y.-H, Wong K.-T. Org. Electron. 2012; 13: 2671
  • 13 Albrecht WL, Fleming RW, Horgan SW, Mayer GD. J. Med. Chem. 1977; 20: 364
  • 14 He C, Wang J, Zhao L, Liu T, Zhang J, Duan C. Chem. Commun. 2013; 49: 627

    • For selected recent reviews, see:
    • 15a Knölker H.-J. Top. Curr. Chem. 2005; 244: 115
    • 15b Knölker H.-J. Chem. Lett. 2009; 38: 8
    • 15c Bauer I, Knölker H.-J. Top. Curr. Chem. 2012; 309: 203
    • 15d Roy J, Jana AK, Mal D. Tetrahedron 2012; 68: 6099 ; and references cited therein

    • For selected recent examples, see:
    • 15e Knott KE, Auschill S, Jager A, Knölker H.-J. Chem. Commun. 2009; 1467
    • 15f Chmielewski MJ. Synthesis 2010; 3067
    • 15g Gruner KK, Hopfmann T, Matsumoto K, Jager A, Katsuki T, Knölker H.-J. Org. Biomol. Chem. 2011; 9: 2057
    • 15h Knölker H.-J, Fuchsenberger M, Forke R. Synlett 2011; 2056
    • 15i Yang W, Zhou J, Wang B, Ren H. Chem. Eur. J. 2011; 17: 13665
    • 15j Gensch T, Rönnefahrt M, Czerwonka R, Jäger A, Kataeva O, Bauer I, Knölker H.-J. Chem. Eur. J. 2012; 18: 770
    • 15k Borger C, Kataeva O, Knölker H.-J. Org. Biomol. Chem. 2012; 10: 7269
    • 15l Xiao F, Liao Y, Wu M, Deng G.-J. Green Chem. 2012; 14: 3277
    • 15m Knölker H.-J, Berndt A, Gruner M, Schmidt A. Synlett 2013; 24: 2102
    • 15n Hesse R, Gruner KK, Kataeva O, Schmidt AW, Knölker H.-J. Chem. Eur. J. 2013; 19: 14098
    • 15o Kumar VP, Gruner KK, Kataeva O, Knölker H.-J. Angew. Chem. Int. Ed. 2013; 52: 11073
    • 15p Jiang Q, Duan-Mu D, Zhong W, Chen H, Yan H. Chem. Eur. J. 2013; 19: 1903
    • 16a Dunlop HG, Tucker SH. J. Chem. Soc. 1939; 1945
    • 16b Preston WG, Tucker SH, Cameron JM. L. J. Chem. Soc. 1942; 500
    • 17a Sprague PW. US 4061655, 1977
    • 17b Patrick DA, Boykin DW, Wilson WD, Tanious FA, Spychala J, Bender BC, Hall JE, Dykstra CC, Ohemeng KA, Tidwell RR. Eur. J. Med. Chem. 1997; 32: 781
    • 17c Yang Y, Xue M, Marshall LJ, de Mendoza J. Org. Lett. 2011; 13: 3186
  • 18 Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049 ; and references cited therein
  • 19 Maligres PE, Waters MS, Fleiz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
  • 20 Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
    • 21a Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J. Org. Chem. 2007; 72: 7523
    • 21b Geyer AM, Wiedner ES, Gary JB, Gdula RL, Kuhlmann NC, Johnson MJ. A, Dunietz BD, Kampf JW. J. Am. Chem. Soc. 2008; 130: 8984
    • 21c Kinoshita M, Takamura K, Kawamoto M, Shishido A, Shiono T, Ikeda T. Mol. Cryst. Liq. Cryst. 2012; 563: 92
    • 22a Brendle JJ, Outlaw A, Kumar A, Boykin DW, Patrick DA, Tidwell RR, Werbovetz KA. Antimicrob. Agents Chemother. 2002; 46: 797
    • 22b MacMillan KS, Naidoo J, Liang J, Melito L, Williams NS, Morlock L, Huntington PJ, Estill SJ, Longgood J, Becker GL, McKnight SL, Pieper AA, De Brabander JK, Ready JM. J. Am. Chem. Soc. 2011; 133: 1428
  • 23 Wei K.-J, Ni J, Gao J, Liu Y, Liu Q.-L. Eur. J. Inorg. Chem. 2007; 3868
  • 24 Li Z, Wang L, Zhou X. Adv. Synth. Catal. 2012; 354: 584 ; and references cited therein
  • 25 Crystallographic data for compound 3·DMF: C17H16N2O5, M = 328.32, monoclinic, space group P 1 21/C 1, a = 6.0698(6) Å, b = 15.9150(15) Å, c = 16.8083(15) Å, α = 90°, β = 108.148(5)°, γ = 90°, V = 1542.9(3) Å3, D calcd = 1.413 g/cm3, T = 100 K, Z = 4; reflections collected/unique: 10482/6623, R(all) = 0.0483, wR(gt) = 0.1524. CCDC 938820 contains the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 26 Mitchell DR, Plant SG. P. J. Chem. Soc. 1936; 1295