Synthesis 2014; 46(05): 646-652
DOI: 10.1055/s-0033-1340556
paper
© Georg Thieme Verlag Stuttgart · New York

Strategies for Large-Scale Synthesis of Coelenterazine for in Vivo Applications

Tej B. Shrestha*
a   Kansas State University, Department of Chemistry, 213 CBC Building, Manhattan, KS 66506, USA   Fax: +1(785)5326666   Email: sbossman@ksu.edu
b   Kansas State University, Anatomy & Physiology, 130 Coles Hall, Manhattan, KS, 66506, USA   Email: tbs3@vet.k-state.edu
,
Deryl L. Troyer
b   Kansas State University, Anatomy & Physiology, 130 Coles Hall, Manhattan, KS, 66506, USA   Email: tbs3@vet.k-state.edu
,
Stefan H. Bossmann*
a   Kansas State University, Department of Chemistry, 213 CBC Building, Manhattan, KS 66506, USA   Fax: +1(785)5326666   Email: sbossman@ksu.edu
› Author Affiliations
Further Information

Publication History

Received: 25 November 2013

Accepted after revision: 10 December 2013

Publication Date:
09 January 2014 (online)


Abstract

A new application of two Negishi-type coupling reactions for the synthesis of coelenterazine is reported. The synthesis of coelenterazine in high purity on a gram scale will enable numerous approaches to bioluminescence imaging and possibly photodynamic therapy of deep-seated tumors. Coelenterazine is the substrate for several luciferases, among them Gaussia luciferase (gLuc). This synthesis starts with pyrazin-2-amine and uses inexpensive starting materials and catalysts.

Supporting Information

 
  • References

    • 1a Suzuki T, Kondo C, Kanamori T, Inouye S. Anal. Biochem. 2011; 415: 182
    • 1b Shrestha TB, Seo GM, Basel MT, Kalita M, Wang H, Villanueva D, Pyle M, Balivada S, Rachakatla RS, Shinogle H, Thapa PS, Moore D, Troyer DL, Bossmann SH. Photochem. Photobiol. Sci. 2012; 11: 1251
  • 2 Shifera AS, Hardin JA. Anal. Biochem. 2010; 396: 167
  • 3 Yu YA, Timiryasova T, Zhang Q, Beltz R, Szalay AA. Anal. Bioanal. Chem. 2003; 377: 964
  • 4 Hosseinkhani S. Cell. Mol. Life Sci. 2011; 68: 1167
  • 5 Shimomura O. Angew. Chem. Int. Ed. 2009; 48: 5590
  • 6 Teranishi K. Bioorg. Chem. 2007; 35: 82
  • 7 Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D, Weaver C, Dugger K, Lamar D, Kesterson RA, Wang XD, Frank SJ. ILAR J. 2008; 49: 103
  • 8 Shimomur O, Johnson FH. Tetrahedron Lett. 1973; 14: 2963
  • 9 Shimomura O, Johnson FH. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 2611
  • 10 Hori K, Cormier MJ. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 120
  • 11 Hori K, Charbonneau H, Hart RC, Cormier MJ. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4285
  • 12 Barnes AT, Case JF. Am. Zool. 1970; 10: 506
  • 13 Roda A, Guardigli M, Michelini E, Mirasoli M. TrAC, Trends Anal. Chem. 2009; 28: 307
  • 14 Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R. Photochem. Photobiol. Sci. 2003; 2: 124
  • 15 Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Bioconjugate Chem. 2007; 18: 1391
  • 16 Huang Z, Xu HP, Meyers AD, Musani AI, Wang LW, Tagg R, Barqawi AB, Chen YK. Technol. Cancer Res. Treat. 2008; 7: 309
  • 17 Shimomura O. Bioluminescence: Chemical Principles and Methods . World Scientific Publishing Co. Pte. Ltd; Singapore: 2006
  • 18 Inoue S, Sugiura S, Kakoi H, Hasizume K, Goto T, Iio H. Chem. Lett. 1975; 141
    • 19a Inouye S, Iimori R, Sahara Y, Hisada S, Hosoya T. Anal. Biochem. 2010; 407: 247
    • 19b Mosrin M, Bresser T, Knochel P. Org. Lett. 2009; 11: 3406
    • 19c Makarasen A, Kuse M, Nishikawa T, Isobe M. Bull. Chem. Soc. Jpn. 2009; 82: 870
    • 19d Adamczyk M, Akireddy SR, Johnson DD, Mattingly PG, Pan Y, Reddy RE. Tetrahedron 2003; 59: 8129
    • 19e Devillers I, Arrault A, Olive G, Marchand-Brynaert J. Tetrahedron Lett. 2002; 43: 3161
    • 19f Kakoi H. Chem. Pharm. Bull. 2002; 50: 301
    • 19g Adamczyk M, Johnson DD, Mattingly PG, Pan Y, Reddy RE. Org. Prep. Proced. Int. 2001; 33: 477
    • 19h Keenan M, Jones K, Hibbert F. Chem. Commun. 1997; 323
    • 19i Hirano T, Negishi R, Yamaguchi M, Chen FQ, Ohmiya Y, Tsuji FI, Ohashi M. Tetrahedron 1997; 53: 12903
    • 19j GonzalezTrueba G, Paradisi C, Zoratti M. Anal. Biochem. 1996; 240: 308
    • 19k Teranishi K, Goto T. Bull. Chem. Soc. Jpn. 1990; 63: 3132
  • 20 King AO, Okukado N, Negishi E. J. Chem. Soc., Chem. Commun. 1977; 683
  • 21 Negishi EI. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 22 Zou J, Iyer KS, Stewart SG, Raston CL. New J. Chem. 2011; 35: 854
  • 23 Fuwa H. Bull. Chem. Soc. Jpn. 2010; 83: 1401
  • 24 Kondolff I, Doucet H, Santelli M. Organometallics 2006; 25: 5219
  • 25 Sato N, Takeuchi R. Synthesis 1990; 659
  • 26 Huo SQ. Org. Lett. 2003; 5: 423
  • 27 Milne JE, Buchwald SL. J. Am. Chem. Soc. 2004; 126: 13028
  • 28 Sun LL, Peng GS, Niu HM, Wang Q, Li CB. Synthesis 2008; 3919
  • 29 Tietze LF, Eicher T, Diederichsen U, Speicher A. Reactions and Synthesis in the Organic Chemistry Laboratory . Wiley-VCH; Weinheim: 2007
  • 30 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2002; 4: 553
  • 31 Sajiki H, Hirota K. Chem. Pharm. Bull. 2003; 51: 320
  • 32 Sato N. J. Heterocycl. Chem. 1982; 19: 673