Synlett 2014; 25(5): 645-652
DOI: 10.1055/s-0033-1340501
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium Nanoparticles Immobilized on Nanosilica Triazine Dendritic Polymer (Pd np -nSTDP) as Catalyst in the Synthesis of Mono-, Di-, and Trisulfides through C–S Cross-Coupling Reactions

Amir Landarani Isfahani
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Iraj Mohammadpoor-Baltork*
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Valiollah Mirkhani*
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Majid Moghadam
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Ahmad Reza Khosropour
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Shahram Tangestaninejad
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Mahboobeh Nasr-Esfahani
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
,
Hadi Amiri Rudbari
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, Fax: +98(311)6689732   Email: imbaltork@sci.ui.ac.ir   Email: mirkhani@sci.ui.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 28 October 2013

Accepted: 09 December 2013

Publication Date:
14 January 2014 (online)


Abstract

A wide variety of diaryl sulfides has been synthesized in excellent yields via C–S cross-couplings of aryl/heteroaryl halides with aromatic/heteroaromatic thiols in the presence of palladium nanoparticles immobilized on nanosilica triazine dendritic polymer (Pd np -nSTDP) as a reusable catalyst under thermal conditions and microwave irradiation. Pd np -nSTDP also showed excellent catalytic activity for the preparation of a series of di- and trisulfides with benzene, pyridine, pyrimidine, and/or 1,3,5-triazine as the central cores by one-pot multi C–S cross-coupling reactions.

Supporting Information

 
  • References and Notes

    • 1a Liu L, Stelmach JE, Natarajan SR, Chen M.-H, Singh SB, Schwartz CD, Fitzgerald CE, O’Keefe SJ, Zaller DM, Schmatz DM, Doherty JB. Bioorg. Med. Chem. Lett. 2003; 13: 3979
    • 1b Kaldor SW, Kalish VJ, Davies JF. II, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
  • 2 Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, O’Beirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT, Tornos J, Watts AJ, Woodland IA. Org. Process Res. Dev. 2005; 9: 555
  • 3 Gangjee AZ, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
  • 4 Pasquini S, Mugnaini C, Tintori C, Botta M, Trejos A, Arvela RK, Larhed M, Witvrouw M, Michiels M, Christ F, Debyser Z, Corelli F. J. Med. Chem. 2008; 51: 5125
    • 5a Liu G, Huth JR, Olejniczak ET, Mendoza F, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 5b Nielsen SF, Nielsen EØ, Olsen GM, Liljefors T, Peters D. J. Med. Chem. 2000; 43: 2217
    • 5c Sciabola S, Carosati E, Baroni M, Mannhold R. J. Med. Chem. 2005; 48: 3756
    • 6a Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
    • 6b Wager KM, Daniels MH. Org. Lett. 2011; 13: 4052
    • 6c Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 6d Gao G.-Y, Colvin AJ, Chen Y, Zhang P. J. Org. Chem. 2004; 69: 8886
    • 6e Li GY, Zheng G, Noonan AF. J. Org. Chem. 2001; 66: 8677
    • 6f Kosugi M, Ogata T, Terada M, Sano H, Migita T. Bull. Chem. Soc. Jpn. 1985; 58: 3657
    • 6g Migita Y, Shimizu T, Asami Y, Shiobara J, Kato T, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 6h Murahashi S.-I, Yamamura M, Yanagisawa K, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
    • 7a Xu H.-J, Liang Y.-F, Zhoua X.-F, Feng YS. Org. Biomol. Chem. 2012; 10: 2562
    • 7b Shahjahan Kabir M, Lorenz M, Van Linn ML, Namjoshi OA, Ara S, Cook JM. J. Org. Chem. 2010; 75: 3626
    • 7c Sperotto E, van Klink GP. M, de Vries JG, van Koten G. J. Org. Chem. 2008; 74: 5625
    • 7d Carril M, SanMartin R, Domínguez E, Tellitu I. Chem. Eur. J. 2007; 13: 5100
    • 7e Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 7f Bates CG, Saejueng P, Dohert MQ, Venkataraman D. Org. Lett. 2004; 6: 5005
    • 7g Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 7h Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 7i Herrero MT, SanMartin R, Domínguez E. Tetrahedron 2009; 65: 1500
    • 7j Tao C, Lv A, Zhao N, Yang S, Liu X, Zhou J, Liu W, Zhao J. Synlett 2011; 134
    • 8a Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
    • 8b Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
    • 8c Cristau HJ, Chabaud B, Labaudiniere R, Christol H. J. Org. Chem. 1986; 51: 875
  • 9 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 10a Prakash Reddy V, Swapna K, Vijay Kumar A, Rama Rao K. J. Org. Chem. 2009; 74: 3189
    • 10b Prakash Reddy V, Vijay Kumar A, Swapna K, Rama Rao K. Org. Lett. 2009; 11: 1697
    • 11a Arisawa M, Ichikawa T, Yamaguchi M. Org. Lett. 2012; 14: 5318
    • 11b Cao C, Fraser LR, Love JA. J. Am. Chem. Soc. 2005; 127: 17614
    • 11c Ajiki K, Hirano M, Tanaka K. Org. Lett. 2005; 7: 4193
  • 12 Carpita A, Rossi R, Scamuzzi B. Tetrahedron Lett. 1989; 2699
    • 13a Lin Y.-Y, Wang Y.-J, Lin C.-H, Cheng J.-H, Lee C.-F. J. Org. Chem. 2012; 77: 6100
    • 13b Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 13c Gay RM, Manarin F, Schneider CC, Barancelli DA, Costa MD, Zeni G. J. Org. Chem. 2010; 75: 5701
    • 14a Flory PJ. Principles of Polymer Chemistry . Cornell University; Ithaca (NY, USA): 1953
    • 14b Ungar G, Liu Y, Zeng X, Percec V, Cho W. Science 2003; 299: 1208
    • 14c Schlüter AD. Top. Curr. Chem. 1998; 197: 165
    • 14d Frey H. Angew. Chem. 1998; 110: 2313
    • 14e Voit B. J. Polym. Sci., Part A: Polym. Chem. 2000; 38: 2505
    • 15a Casado CM, Cuadrado I, Alonso B, Moran M, Losada J. J. Electroanal. Chem. 1999; 463: 87
    • 15b Astruc D, Chardac F. Chem. Rev. 2001; 101: 2991
    • 15c Oosterom GE, Reek JN. H, Kamer PC. J, van Leeuwen PW. N. M. Angew. Chem. 2001; 113: 1878
    • 15d van Heerbeeck R, Kamer PC. J, van Leeuwen PW. N. M, Reek JN. H. Chem. Rev. 2002; 102: 3717
    • 15e Astruc D, Daniel M.-C, Ruiz J. Chem. Commun. 2004; 2637
    • 15f Daniel M.-C, Astruc D. Chem. Rev. 2004; 104: 293
    • 16a Boas U, Heegaard PM. H. Chem. Soc. Rev. 2004; 33: 43
    • 16b Yingyongnarongkul BE, Howarth M, Elliott T, Bradley M. J. Comb. Chem. 2004; 6: 753
    • 17a Neerman MF, Chen H.-T, Parrish AR, Simanek EE. Mol. Pharm. 2004; 1: 390
    • 17b Chen H.-T, Neerman MF, Parrish AR, Simanek EE. J. Am. Chem. Soc. 2004; 126: 10044
    • 17c Lim J, Simanek EE. Mol. Pharm. 2005; 2: 273
    • 18a Kojima C, Kono K, Maruyama K, Takagishi T. Bioconjugate Chem. 2000; 11: 910
    • 18b Sadler K, Tam KJ. P. J. Biotechnol. 2002; 90: 195
    • 18c Stiriba SE, Frey H, Haag R. Angew. Chem. Int. Ed. 2002; 114: 1385
    • 18d Grinstaff MW. Chem. Eur. J. 2002; 8: 2838
    • 18e Lee C, MacKay JA, Fréchet JM, Szoka F. Nat. Biotechnol. 2005; 23: 1517
  • 19 Dendrimer Chemistry . Vögtle F, Richardt G, Werner N. Wiley-VCH; Weinheim: 2009
    • 20a Antebi S, Arya P, Manzer LE, Alper H. J. Org. Chem. 2002; 67: 6623
    • 20b Zweni PP, Alper H. Adv. Synth. Catal. 2004; 346: 849
    • 20c Touzani R, Alper H. J. Mol. Catal. A: Chem. 2005; 227: 197
    • 20d Reynhardt JP. K, Yang Y, Sayari A, Alper H. Adv. Synth. Catal. 2005; 347: 1379
    • 20e Zweni PP, Alper H. Adv. Synth. Catal. 2006; 348: 725
    • 20f Huang W, Kuhn JN, Tsung C.-K, Zhang Y, Habas SE, Yang P, Somorjai GA. Nano Lett. 2008; 8: 2027
  • 21 Landarani Isfahani A, Mohammadpoor-Baltork I, Mirkhani V, Khosropour AR, Moghadam M, Tangestaninejad S, Kia R. Adv. Synth. Catal. 2013; 355: 957
  • 22 The microwave system used in these experiments includes the following items: Micro-SYNTH Labstation, equipped with a glass door, a dual magnetron system with pyramid shaped diffuser, 1000 W delivered power, exhaust system, magnetic stirrer, ‘quality pressure’ sensor for flammable organic solvents, and a ATCFO fiber optic system for automatic temperature control.
  • 23 General Procedure for the Synthesis of Diaryl Sulfides via C–S Cross-Coupling Catalyzed by Pd np -nSTDP In a round-bottom flask equipped with a condenser and a magnetic stirrer, a mixture of aryl halide (1 mmol), aromatic/heteroaromatic thiol (1 mmol), K2CO3 (1.5 mmol), and Pd np -nSTDP (0.05 mol% Pd) in DMF (2 mL) was stirred at 80 °C or irradiated with MW (230 W, 80 °C) for the desired time according to Table 2 and Scheme 2. The progress of the reaction was monitored by TLC (eluent: Et2O–EtOAc, 5:1). After completion of the reaction, the mixture was cooled to r.t., Et2O (15 mL) was added, and the catalyst was separated by centrifugation. The organic layer was washed with H2O (2 × 10 mL) and dried over anhydrous MgSO4. Filtration and evaporation of the solvent and purification of the crude product by recrystallization from Et2O–EtOAc (5:1) afforded the pure product.
  • 24 General Procedure for the Synthesis of Disulfides via Twofold C–S Cross-Coupling Catalyzed by Pd np -nSTDP A mixture of 2,6-dibromopyridine (1 mmol), aromatic/heteroaromatic thiol (2 mmol), K2CO3 (2.5 mmol), and Pd np -nSTDP (0.05 mol% Pd) in DMF (3 mL) was stirred at 80 °C or exposed to MW irradiation (230 W, 80 °C) for the appropriate time as mentioned in Table 3. The reaction progress was monitored by TLC (eluent: Et2O–EtOAc, 3:1). After completion of the reaction, the mixture was cooled to r.t., EtOAc (10 mL) was added, and the catalyst was separated by centrifugation. The organic phase was washed with H2O (2 × 10 mL), dried over anhydrous MgSO4, filtered, and evaporated. The resulting crude product was purified by recrystallization from EtOAc to give the pure product.
  • 25 General Procedure for the Synthesis of Trisulfides via Threefold C–S Cross-Coupling Catalyzed by Pd np -nSTDP A mixture of aromatic trithiol (1 mmol), aryl bromide (3 mmol), K 2 CO3 (2.5 mmol), and Pd np -nSTDP (0.05 mol% Pd) in DMF (3 mL) was stirred at 80 °C or subjected to MW irradiation (230 W, 80 °C) for the appropriate time according to Table 3. The workup was performed as mentioned for the synthesis of disulfides, and the pure trisulfide was obtained by recrystallization of the crude product from EtOAc.