Synlett 2014; 25(3): 423-427
DOI: 10.1055/s-0033-1340300
letter
© Georg Thieme Verlag Stuttgart · New York

On-Water Synthesis of Dipyrromethanes via Bis-Hetero-Diels–Alder Reaction of Azo- and Nitrosoalkenes with Pyrrole

Nelson A. M. Pereira
a   Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal   Email: tmelo@ci.uc.pt
,
Susana M. M. Lopes
a   Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal   Email: tmelo@ci.uc.pt
,
Américo Lemos*
b   CIQA, FCT, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
,
Teresa M. V. D. Pinho e Melo*
a   Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal   Email: tmelo@ci.uc.pt
› Author Affiliations
Further Information

Publication History

Received: 17 September 2013

Accepted after revision: 28 October 2013

Publication Date:
04 December 2013 (online)


Abstract

An unprecedented one-pot approach to 5-substituted dipyrromethanes based on the hetero-Diels–Alder reaction of azo- and nitrosoalkenes is described. The on-water reaction conditions led to the target compounds in higher yields with significantly shorter reaction times and simpler purification procedures than ­carrying out the reaction in dichloromethane or in the absence of solvent.

Supporting Information

 
  • References and Notes

    • 1a Gryko DT, Gryko D, Lee C.-H. Chem. Soc. Rev. 2012; 41: 3780
    • 1b Lindsey JS. Acc. Chem. Res. 2010; 43: 300
    • 1c Wood TE, Thompson A. Chem. Rev. 2007; 107: 1831
    • 1d Gale PA, Anzenbacher PJr, Sessler JL. Coord. Chem. Rev. 2001; 222: 57
    • 1e Yedukondalu M, Ravikanth M. Coord. Chem. Rev. 2011; 255: 547
    • 1f Pareek Y, Ravikanth M, Chandrashekar TK. Acc. Chem. Res. 2012; 45: 1801
    • 1g Roznyatovskiy VV, Lee C.-H, Sessler JL. Chem. Soc. Rev. 2013; 42: 1921
    • 2a Wasielewski MR. Acc. Chem. Res. 2009; 42: 1910
    • 2b Leslie M. Science 2009; 323: 1286
    • 2c Balzani V, Credi A, Venturi M. ChemSusChem 2008; 1: 26
    • 3a Wang X.-F, Tamiaki H. Energy Environ. Sci. 2010; 3: 94
    • 3b Stromberg JR, Marton A, Kee HL, Kirmaier C, Diers JR, Muthiah C, Taniguchi M, Lindsey JS, Bocian DF, Meyer GJ, Holten D. J. Phys. Chem. C 2007; 111: 15464
    • 3c Hasselman GM, Watson DF, Stromberg JR, Bocian DF, Holten D, Lindsey JS, Meyer GJ. J. Phys. Chem. B 2006; 110: 25430
    • 3d Li L.-L, Diau EW.-G. Chem. Soc. Rev. 2013; 42: 291
    • 4a Lovell J, Liu TW. B, Chen J, Zheng G. Chem. Rev. 2010; 110: 2839
    • 4b Juzeniene A, Peng Q, Moan J. Photochem. Photobiol. Sci. 2007; 6: 1234
    • 4c Licha K. Top. Curr. Chem. 2002; 222: 1
    • 4d Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Lasers Med. Sci. 2009; 24: 259
    • 5a Boens N, Leen V, Dehaen W. Chem. Soc. Rev. 2012; 41: 1130
    • 5b Benstead M, Mehl GH, Boyle RW. Tetrahedron 2011; 67: 3573
    • 5c Suzuki S, Kozaki M, Nozaki K, Okada K. J. Photochem. Photobiol., C 2011; 12: 269
    • 5d Brothers PJ. Inorg. Chem. 2011; 50: 12374
    • 5e Yang Y, Zhao Q, Feng W, Li F. Chem. Rev. 2012; 113: 192
    • 5f Wysocki LM, Lavis LD. Curr. Opin. Chem. Biol. 2011; 15: 752
    • 5g Wang S, Li N, Pan W, Tang B. Trend. Anal. Chem. 2012; 39: 3
    • 5h Dean KM, Qin Y, Palmer AE. Biochim. Biophys. Acta, Mol. Cell Res. 2012; 1823: 1406
    • 5i Luo S, Zhang E, Su Y, Cheng T, Shi C. Biomaterials 2011; 32: 7127
    • 5j Vigato PA, Peruzzo V, Tamburini S. Coord. Chem. Rev. 2012; 256: 953
    • 6a Beer PD, Gale PA. Angew. Chem. Int. Ed. 2001; 40: 486
    • 6b Caltagirone C, Gale PA. Chem. Soc. Rev. 2009; 38: 520
    • 6c Wenzel M, Hiscock JR, Gale PA. Chem. Soc. Rev. 2012; 41: 480
    • 7a Sreedevi KC. G, Thomas AP, Salini PS, Ramakrishnan S, Anju KS, Holaday MG. D, Reddy ML. P, Suresh CH, Srinivasan A. Tetrahedron Lett. 2011; 52: 5995
    • 7b Sobenina LN, Vasil’tsov AM, Petrova OV, Petrushenko KB, Ushakov IA, Clavier G, Meallet-Renault R, Mikhaleva AI, Trofimov BA. Org. Lett. 2011; 13: 2524
    • 7c Sobenina LN, Petrova OV, Petrushenko KB, Ushakov IA, Mikhaleva AI, Meallet-Renault R, Trofimov BA. Eur. J. Org. Chem. 2013; 4107
    • 8a Mikhalitsyna EA, Tyurin VS, Nefedov SE, Syrbu SA, Semeikin AS, Koifman OI, Beletskaya IP. Eur. J. Inorg. Chem. 2012; 5979
    • 8b Nakamura M, Tahara H, Takahashi K, Nagata T, Uoyama H, Kuzuhara D, Mori S, Okujima T, Yamada H, Uno H. Org. Biomol. Chem. 2012; 6840
  • 9 Yadav JS, Subba Reddy BV, Sunder Ram Reddy P, Reddy KS, Reddy PN. Synlett 2003; 417
  • 10 Hong S.-J, Lee M.-H, Lee C.-H. Bull. Korean Chem. Soc. 2004; 25: 1545
  • 11 Tsuchimoto T, Hatanaka K, Shirakawa E, Kawakami Y. Chem. Commun. 2003; 2454
  • 12 Tan ST, Teo YC, Fan WY. J. Organomet. Chem. 2012; 708-709: 58
  • 13 Dmowski W, Piasecks-Maciejewska K, Urbańczyk-Lipkowska Z. Synthesis 2003; 841

    • Reviews:
    • 14a Sukhorukov AY, Ioffe SL. Chem. Rev. 2011; 111: 5004
    • 14b Attanasi OA, De Crescentini L, Favi G, Filippone P, Mantellini F, Perrulli FR, Santeusanio S. Eur. J. Org. Chem. 2009; 3109
  • 15 Pereira NA. M, Lemos A, Serra AC, Pinho e Melo TM. V. D. Tetrahedron Lett. 2013; 54: 1553
    • 16a Zhang Y, Stephens D, Hernandez G, Mendoza R, Larionov OV. Chem. Eur. J. 2012; 18: 16612
    • 16b Yoon SC, Kim K, Park YJ. J. Org. Chem. 2001; 66: 7337
    • 16c Zimmer R, Angermann J, Hain U, Hiller F, Reissig H.-U. Synthesis 1997; 1467
    • 17a Lemos A, Lourenço JP. ARKIVOC 2010; (v): 170
    • 17b South MS. J. Heterocycl. Chem. 1999; 36: 301
    • 17c South MS, Jakuboski TL, Westmeyer MD, Dukesherer DR. J. Org. Chem. 1996; 61: 8921
    • 17d South MS, Jakuboski TL, Westmeyer MD, Dukesherer DR. Tetrahedron Lett. 1996; 37: 1351
    • 17e South MS, Jakuboski TL. Tetrahedron Lett. 1995; 36: 5703
    • 17f Attanasi OA, Favi G, Filippone P, Perrulli FR, Santeusanio S. Org. Lett. 2009; 11: 309
    • 17g Attanasi OA, Favi G, Golobič A, Perrulli FP, Stanovnik B, Svete J. Synlett 2007; 2971
    • 17h Gilchrist TL, Stevens JA. J. Chem. Soc., Perkin Trans. 1 1985; 1741
    • 18a Lee C.-H, Lindsey JS. Tetrahedron 1994; 50: 11427
    • 18b Littler BJ, Miller MA, Hung C.-H, Wagner RW, O’Shea DF, Boyle PD, Lindsey JS. J. Org. Chem. 1999; 64: 1391
  • 19 Yoon SC, Cho J, Kim K. J. Chem. Soc., Perkin Trans. 1 1998; 109
    • 20a Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 20b Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 20c Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 20d Naravan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless B. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 20e Breslow R. Acc. Chem. Res. 2004; 10: 471
  • 21 Attanasi OA, De Crescentini L, Filippone P, Fringuelli F, Mantellini F, Matteucci M, Piermatti O, Pizzo F. Helv. Chim. Acta 2001; 84: 513
  • 22 General Procedure for the Synthesis of Dipyrromethanes Hydrazone 1 (0.83 mmol) or oxime 4 was added to a solution of Na2CO3 (8.30 mmol) in H2O (11 mL) and pyrrole (16.6 mmol). The reaction mixture was stirred at r.t. for 4 h. After this time the mixture was extracted with CH2Cl2 (3 × 20 mL) and dried over Na2SO4. After filtration, the solvent and the excess pyrrole were removed under reduced pressure. The product was crystallized with Et2O–n-hexane, filtered, washed with hexane and dried under vacuum. 5-(1′-tert-Butoxycarbonylhydrazonoethyl)-dipyrromethane (2a) Yield: 82%; mp 137–138 °C (Et2O–n-hexane). IR (KBr): νmax = 3337, 2979, 1720, 1529, 1369, 1245, 1164, 715 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.74 (br s, 2 H, NH), 7.51 (s, 1 H, NH), 6.70 (br s, 2 H, α-H pyrrolic), 6.13 (br s, 2 H, β-H pyrrolic), 6.05 (br s, 2 H, β-H pyrrolic), 5.05 (s, 1 H, meso), 1.83 (s, 3 H, Me), 1.53 (s, 9 H, t-Bu) ppm. 13C NMR (100 MHz, CDCl3): δ = 156.0, 152.9, 129.1, 117.6, 108.3, 106.9, 81.4, 46.4, 28.3, 13.9 ppm. ESI-HRMS: m/z calcd for C16H23N4O2 [M + H]+: 303.1815; found: 303.1813. (E)-5-(1′-Hydroxyiminoethyl)dipyrromethane (5a) Yield 74%; mp 142–144 °C (Et2O–n-hexane). IR (KBr): νmax = 3338, 1403, 1218, 1095, 1029, 948, 728 cm–1. 1H NMR (400 MHz, CDCl3/DMSO-d 6): δ = 10.02 (s, 1 H, OH), 9.37 (s, 2 H, NH), 6.67 (br s, 2 H, α-H pyrrolic), 6.06 (br s, 2 H, β-H pyrrolic), 5.97 (br s, 2 H, β-H pyrrolic), 5.00 (s, 1 H, meso), 1.84 (s, 9 H, Me) ppm. 13C NMR (100 MHz, CDCl3/ DMSO-d 6): δ = 157.0, 129.5, 117.2, 107.6, 106.5, 44.3, 12.3 ppm. ESI-HRMS: m/z calcd for C11H14N3O [M + H]+: 204.1131; found: 204.1132.