Synlett 2013; 24(20): 2775-2776
DOI: 10.1055/s-0033-1340149
spotlight
© Georg Thieme Verlag Stuttgart · New York

Acrolein

Long Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. of China   Email: harpshell@foxmail.com
› Author Affiliations
Further Information

Publication History

Publication Date:
05 November 2013 (online)

Introduction

Acrolein, also called propylene aldehyde, 2-propenal, or allyl aldehyde, is considered the simplest α,β-unsaturated aldehyde. It is a colorless liquid with a disagreeable, acrid smell. Because of its low boiling point and flammability, it evaporates quickly and burns easily. With two reactive functional groups, a C–C double bond and an aldehyde carbonyl, acrolein can readily participate in numerous types of transformations, including Michael additions,[1] Diels–Alder reactions,[2] 1,3-dipolar cycloadditions,[3] and Morita–Baylis–Hillman (MBH) reactions.[4] Moreover, acrolein can be used for the synthesis of acrylic acid and acrylates which are widely used in the textile and resin industry.[5] In addition, it is a potential marker of various diseases, such as chronic renal failure, stroke, and cancer.[6] Acrolein is commercially available and can be industrially prepared by the oxidation of propene as well as by dehydration of glycerol.[5]

 
  • References

    • 1a Fesenko AA, Shutalev AD. Tetrahedron Lett. 2012; 53: 6261
    • 1b Giorgi G, López-Alvarado P, Miranda S, Rodriguez J, Menéndez JC. Eur. J. Org. Chem. 2013; 7: 1327
    • 2a Nino AD, Bortolini O, Maiuolo L, Garofalo A, Russo B, Sindona G. Tetrahedron Lett. 2011; 52: 1415
    • 2b Hatano M, Mizuno T, Izumiseki A, Usami R, Asai T, Akakura M, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 12189
    • 3a Weseliński L, Kalinowska E, Jurczak J. Tetrahedron: Asymmetry 2012; 23: 264
    • 3b Shen Z.-L, Goh KK. K, Wong CH. A, Loo W.-L, Yang Y.-S, Lu J, Loh T.-P. Chem. Commun. 2012; 48: 5856
    • 4a Kumar JS, Bashian CM, Corsello MA, Jonnalagadda SC, Mereddy VR. Tetrahedron Lett. 2010; 51: 4482
    • 4b Reddy SS, Krupadanam GL. Synth. Commun. 2010; 40: 1292
    • 4c Schmidt Y, Breit B. Chem.–Eur. J. 2011; 17: 11789
  • 5 Martin A, Armbruster U, Atia H. Eur. J. Lipid. Sci. Technol. 2012; 114: 10
    • 6a Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K. Biochem. Bioph. Res. Commun. 2003; 305: 143
    • 6b Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K. Stroke 2005; 36: 2609
  • 7 Velasco J, Ariza X, Badía L, Bartra M, Berenguer R, Farràs J, Gallardo J, Garcia J, Gasanz Y. J. Org. Chem. 2013; 78: 5482
  • 8 Watson KD, Carosso S, Miller MJ. Org. Lett. 2013; 15: 358
  • 9 Nordqvist A, Björkelid C, Andaloussi M, Jansson AM, Mowbray SL, Karlén A, Larhed M. J. Org. Chem. 2011; 76: 8986
  • 10 Zhang F.-L, Xu A.-W, Gong Y.-F, Wei M.-H, Yang X.-L. Chem.–Eur. J. 2009; 15: 6815
  • 11 Momiyama N, Konno T, Furiya Y, Iwamoto T, Terada M. J. Am. Chem. Soc. 2011; 133: 19294
    • 12a Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 12b Liu Y.-L, Zeng X.-P, Zhou J. Chem. Asian. J. 2012; 7: 1759
    • 12c Zeng X.-P, Liu Y.-L, Ji C.-B, Zhou J. Chin. J. Chem. 2012; 30: 2631
  • 13 Yao Y, Li J.-L, Zhou Q.-Q, Dong L, Chen Y.-C. Chem.–Eur. J. 2013; 19: 9447
  • 14 Suga H, Arikawa T, Itoh K, Okumura Y, Kakehi A, Shiro M. Heterocycles 2010; 81: 1669