Synlett 2014; 25(1): 120-122
DOI: 10.1055/s-0033-1340053
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Protodecarboxylation and Aromatization of Tetrahydro-β-Carboline-3-Carboxylic Acids

Ramu Meesala, Mohd Nizam Mordi*, Sharif Mahsufi Mansor
  • Centre For Drug Research, Universiti Sains Malaysia, Minden, 11800 USM, Penang, Malaysia   Fax: +60(4)6568669   Email: mnizam@usm.my
Further Information

Publication History

Received: 03 September 2013

Accepted after revision: 30 September 2013

Publication Date:
12 November 2013 (eFirst)

Abstract

An efficient synthetic methodology has been developed to construct aromatic β-carbolines from tetrahydro-β-carboline-3-carboxylic acids by copper-promoted sequential decarboxylation and oxidative aromatization.

Supporting Information

 
  • References and Notes


    • For reviews on the chemistry and biology of β-carbolines, see:
    • 1a Love BE. Org. Prep. Proced. Int. 1996; 28: 3
    • 1b Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
    • 2a Shilabin AG, Kasanah N, Tekwani BL, Hamann MT. J. Nat. Prod. 2008; 71: 1218
    • 2b Winkler JD, Londregan AT, Hamann MT. Org. Lett. 2006; 8: 2591
    • 2c Boursereau Y, Coldham I. Bioorg. Med. Chem. Lett. 2004; 14: 5841
    • 3a Guan H, Chen H, Peng W, Ma Y, Cao R, Liu X, Xu A. Eur. J. Med. Chem. 2006; 1167
    • 3b Rashid MA, Gustafson KR, Boyd MR. J. Nat. Prod. 2001; 64: 1454
    • 3c Prinsep MR, Blunt JW, Munro MH. G. J. Nat. Prod. 1991; 54: 1068
    • 4a Tang JG, Wang YH, Wang RR, Dong ZJ, Yang LM, Zheng YT, Liu JK. Chem. Biodiversity 2008; 5: 447
    • 4b Wang YH, Tang JG, Wang RR, Yang LM, Dong ZJ, Du L, Shen X, Liu JK, Zheng YT. Biochem. Biophys. Res. Commun. 2007; 355: 1091
    • 4c Yu X, Lin W, Li J, Yang M. Bioorg. Med. Chem. Lett. 2004; 14: 3127
    • 5a Hagen TJ, Skolnick P, Cook JM. J. Med. Chem. 1987; 30: 750
    • 5b Hagen TJ, Guzman F, Schultz C, Cook JM, Skolnick P, Shannon HE. Heterocycles 1986; 10: 2845
    • 5c Müller WE, Fehske KJ, Borbe HO, Wollert U, Nanz C, Rommelspacher H. Pharmacol., Biochem. Behav. 1981; 14: 693
    • 6a Soerens D, Sandrin J, Ungemach F, Mokry P, Wu GS, Yamanaka E, Hutchins L, DiPierro M, Cook JM. J. Org. Chem. 1979; 44: 535
    • 6b Hibino S, Miko O, Masataka I, Kohichi S, Takashi I. Heterocycles 1985; 23: 261
    • 6c Coutts RT, Micetich RG, Baker GB, Benderly A, Dewhurst T, Hall TW, Locock AR, Pyrozko J. Heterocycles 1984; 22: 131
    • 6d Hagen TJ, Skolnick P, Cook JM. J. Med. Chem. 1987; 30: 750
    • 6e Huang W, Li J, Ou L. Synth. Commun. 2007; 37: 2137
    • 6f Agarwal SK, Saxena AK, Jain PC, Malviya B, Chandra H, Anand N. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1987; 26: 757
    • 7a Cain M, Weber RW, Guzman F, Cook JM, Barker SA, Rice KC, Crawley JN, Paul SM, Skolnick P. J. Med. Chem. 1982; 25: 1081
    • 7b Still IJ. W, McNulty J. Heterocycles 1989; 29: 2057
    • 7c Qifeng W, Rihui C, Manxiu F, Xiangdong G, Chunming M, Jinbing L, Huacan S, Wenlie P. Eur. J. Med. Chem. 2009; 44: 533
    • 8a Gatta F, Misiti D. J. Heterocycl. Chem. 1987; 24: 1183
    • 8b Cain M, Campos O, Guzman F, Cook JM. J. Am. Chem. Soc. 1983; 105: 907
    • 8c Campos O, DiPierro M, Cain M, Mantei R, Gawish A, Cook JM. Heterocycles 1980; 14: 975
  • 9 Cairncross A, Roland JR, Henderson RM, Sheppard WA. J. Am. Chem. Soc. 1970; 92: 3187
    • 10a Cohen T, Schambach RA. J. Am. Chem. Soc. 1970; 92: 3189
    • 10b Cohen T, Berninger RW, Wood JT. J. Org. Chem. 1978; 43: 837
    • 11a Nilsson M. Acta Chem. Scand. 1966; 20: 423
    • 11b Bjçrklung C, Nilsson M. Acta Chem. Scand. 1968; 22: 2585
    • 11c Chodowska-Palicka J, Nilsson M. Acta Chem. Scand. 1970; 24: 3353
    • 11d Nilsson M, Ullenius C. Acta Chem. Scand. 1971; 25: 2428
    • 11e Chodowska-Palicka J, Nilsson M. Acta Chem. Scand. 1971; 25: 3451
    • 12a Shepard AF, Winslow NR, Johnson JR. J. Am. Chem. Soc. 1930; 52: 2083
    • 12b Shang R, Liu L. Sci. China Chem. 2011; 54: 1670
    • 12c Gooßen LJ, Rodriguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100 ; Angew. Chem. 2008, 120, 3144
    • 12d Gooßen LJ, Gooßen K, Rodriguez N, Blanchot M, Linder C, Zimmermann B. Pure Appl. Chem. 2008; 80: 1725
  • 13 Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002; 124: 11250
  • 14 Gooßen LJ, Deng G, Levy LM. Science 2006; 313: 662
    • 15a Gooßen LJ, Knauber T. J. Org. Chem. 2008; 73: 8631
    • 15b Fu Z, Huang S, Su W, Hong M. Org. Lett. 2010; 12: 4992
    • 15c Shang R, Yang Z, Zhang S, Liu L. J. Am. Chem. Soc. 2010; 132: 14391
    • 15d Rodrίguez N, Goossen L. J. Chem. Soc. Rev. 2011; 40: 5030
    • 15e Chou C.-M, Chatterjee I, Studer A. Angew. Chem. Int. Ed. 2011; 50: 8614
  • 16 Cao R, Peng W, Chen H, Hou X, Guan H, Chen Q, Ma Y, Xu AE. Eur. J. Med. Chem. 2005; 40: 249
  • 17 General Procedure To 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (1 mmol) in DMF (10 mL) was added CuCl2 (10 mol%) and stirred for 1 h at 130 °C. On completion of the reaction (TLC), H2O (5 mL) was added to the reaction, and the mixture was basified to pH 9 with 1 M NaOH. The aqueous layer was extracted with CH2Cl2 (3 × 20 mL), and the combined organic layers were dried over anhydrous Na2SO4. The CH2Cl2 was evaporated, and the residue was purified by chromatography which afforded pure 9H-pyrido[3,4-b]indole (2a) as a white solid. 1H NMR (500 MHz, DMSO-d 6): δ = 11.63 (1 H, s), 8.89 (d, J = 0.5 Hz, 1 H), 8.31 (d, J = 5.5 Hz, 1 H), 8.2 (d, J = 7.0 Hz, 1 H), 8.09 (dd, J 1 = 0.5 Hz, J 2 = 1.0 Hz, 1 H), 7.60 (d, J = 10.0 Hz, 1 H), 7.55–7.53 (m, 1 H), 7.24–7.21 (m, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 140.5, 137.9, 135.9, 133.7, 128.5, 127.6, 121.7, 120.4, 119.4, 114.7, 112.1. GC–MS: 168 [M+].
    • 18a Cohen T, Schambach RA. J. Am. Chem. Soc. 1970; 92: 3189
    • 18b Goossen LJ, Thiel WR, Rodríguez N, Linder C, Melzer B. Adv. Synth. Catal. 2007; 349: 2241