Synthesis 2014; 46(01): 101-109
DOI: 10.1055/s-0033-1340052
paper
© Georg Thieme Verlag Stuttgart · New York

Iron(II) Chloride–1,1′-Binaphthyl-2,2′-diamine (FeCl2–BINAM) Complex Catalyzed Domino Synthesis of Bisindolylmethanes from Indoles and Primary Alcohols

Sindhura Badigenchala
Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600 036, India   Fax: +91(44)22574202   Email: gsekar@iitm.ac.in
,
Dhandapani Ganapathy
Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600 036, India   Fax: +91(44)22574202   Email: gsekar@iitm.ac.in
,
Ankita Das
Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600 036, India   Fax: +91(44)22574202   Email: gsekar@iitm.ac.in
,
Rahul Singh
Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600 036, India   Fax: +91(44)22574202   Email: gsekar@iitm.ac.in
,
Govindasamy Sekar*
Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600 036, India   Fax: +91(44)22574202   Email: gsekar@iitm.ac.in
› Author Affiliations
Further Information

Publication History

Received: 22 August 2013

Accepted after revision: 01 October 2013

Publication Date:
04 November 2013 (online)


Abstract

Biologically important bisindolylmethanes are synthesized in a domino fashion by using an iron(II) chloride–(±)-1,1′-binaphthyl-2,2′-diamine [FeCl2–(±)-BINAM] complex as the catalyst. This method proceeds via oxidation of a primary alcohol into the corresponding aldehyde followed by nucleophilic addition of an indole in the presence of the catalyst. A reaction intermediate is synthesized separately and converted into the bisindolylmethane product under the same reaction conditions as support for the proposed mechanism.

Supporting Information

 
  • References

    • 1a Mahboobi S, Teller S, Pongratz H, Hufsky H, Sellmer A, Botzki A, Uecker A, Beckers T, Baasner S, Schaechtele C, Ueberall F, Kassack MU, Dove S, Boehmer FD. J. Med. Chem. 2002; 45: 1002
    • 1b Samsoniya SA, Lomtatidze ZS, Ovsyannikova NN, Suvorov NN. Khim. Farm. Zh. 1987; 21: 827
    • 1c Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
    • 2a Safe S, Papineni S, Chintharlapalli S. Cancer Lett. 2008; 269: 326
    • 2b Vanderlaag K, Su Y, Frankel AE, Burghardt RC, Barhoumi R, Chadalapaka G, Jutooru I, Safe S. BMC Cancer 2010; 10: 669
  • 3 Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M. Clin. Cancer Res. 2009; 15: 543
  • 4 Inamoto T, Papineni S, Chintharlapalli S, Cho SD, Safe S, Kamat AM. Mol. Cancer Ther. 2008; 7: 3825
  • 5 Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N. Bioorg. Med. Chem. Lett. 2006; 16: 6302
  • 6 Kamal A, Khan MN. A, Srinivasa RK, Srikanth YV. V, Kaleem AS, Pranay KK, Murthy US. N. J. Enzyme Inhib. Med. Chem. 2009; 24: 559
  • 7 Bell R, Carmeli S, Sar N. J. Nat. Prod. 1994; 57: 1587
  • 8 Chen I, McDougal A, Wang F, Safe S. Carcinogenesis 1998; 19: 1631
    • 9a Bonnesen C, Eggleston IM, Hayes JD. Cancer Res. 2001; 61: 6120
    • 9b Carter TH, Liu K, Ralph Jr W, Chen D, Qi M, Fan S, Yuan F, Rosen EM, Auborn KJ. J. Nutr. 2002; 132: 3314
  • 10 He X, Hu S, Liu K, Guo Y, Xu J, Shao S. Org. Lett. 2006; 8: 333
    • 11a Jafarpour M, Rezaeifard A, Golshani T. J. Heterocycl. Chem. 2009; 46: 535
    • 11b Gong H, Xie Z. Youji Huaxue 2012; 32: 1195
    • 12a Osawa T, Namiki M. Tetrahedron Lett. 1983; 24: 4719
    • 12b Porter JK, Bacon CW, Robbins JD, Himmelsbach DS, Higman HC. J. Agric. Food Chem. 1977; 25: 88
  • 13 Deb ML, Bhuyan PJ. Tetrahedron Lett. 2006; 47: 1441
    • 14a Wang YM, Wen Z, Chen XM, Du D.-M, Matsuura T, Meng JB. J. Heterocycl. Chem. 1998; 35: 313
    • 14b Chatterjee A, Manna S, Banerji J, Pascard C, Prange T, Shoolery JN. J. Chem. Soc., Perkin Trans. 1 1980; 553
    • 15a Kokare ND, Sangshetti JN, Shinde DB. Chin. Chem. Lett. 2008; 19: 1186
    • 15b Singh P, Singh D, Samant S. Synth. Commun. 2005; 35: 2133
    • 16a Young PC, Hadfield MS, Arrowsmith L, MacLeod KM, Mudd RJ, Jordan-Hore JA, Lee A.-L. Org. Lett. 2012; 14: 898
    • 16b Yang J, Wang Z, Pan F, Li Y, Bao W. Org. Biomol. Chem. 2010; 8: 2975
    • 16c Xia D, Wang Y, Du Z, Zheng QY, Wang C. Org. Lett. 2012; 14: 588
    • 16d Guo X, Pan S, Liu J, Li Z. J. Org. Chem. 2009; 74: 8848
  • 18 Karthik M, Magesh CJ, Perumal PT, Palanichamy M, Arabindoo B, Murugesan V. Appl. Catal., A 2005; 286: 137
    • 19a Suda K, Takanami T. Chem. Lett. 1994; 10: 1915
    • 19b Khosropour AR, Mohammadpoor-Baltork I, Khodaei MM, Ghanbary P. Z. Naturforsch., B: Chem. Sci. 2007; 62: 537
    • 19c Zanardi A, Corberan R, Mata JA, Peris E. Organometallics 2008; 27: 3570
  • 20 Hikawa H, Yokoyama Y. RSC Adv. 2013; 3: 1061
  • 21 Bolm C, Legros J, Le PJ, Zani L. Chem. Rev. 2004; 104: 6217
    • 22a Gopalaiah K. Chem. Rev. 2013; 113: 3248
    • 22b Chen QY, He YB, Yang ZY. J. Fluorine Chem. 1986; 34: 255
    • 22c Sherry BD, Furstner A. Chem. Commun. 2009; 7116
    • 22d Takeuchi M, Shimakoshi H, Kano K. Organometallics 1994; 13: 1208
    • 22e Zhang L, Peng D, Leng X, Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
    • 22f Wei Y, Ding H, Lin S, Liang F. Org. Lett. 2011; 13: 1674
    • 22g Niu T, Huang L, Wu T, Zhang Y. Org. Biomol. Chem. 2011; 9: 273
    • 22h De H J, Abbaspour TK, Maes BU. W. Angew. Chem. Int. Ed. 2012; 51: 2745
    • 22i Enthaler S. ChemCatChem 2011; 3: 1929
    • 22j Liu W, Liu J, Ogawa D, Nishihara Y, Guo X, Li Z. Org. Lett. 2011; 13: 6272
    • 22k Agrawal T, Cook SP. Org. Lett. 2013; 15: 96
    • 22l Kuzmina OM, Steib AK, Flubacher D, Knochel P. Org. Lett. 2012; 14: 4818
    • 22m Singh PP, Aithagani SK, Yadav M, Singh VP, Vishwakarma RA. J. Org. Chem. 2013; 78: 2639
    • 23a Muthupandi P, Alamsetti SK, Sekar G. Chem. Commun. 2009; 3288
    • 23b Muthupandi P, Sekar G. Org. Biomol. Chem. 2012; 10: 5347

      Domino reactions have attracted a great deal of attention because they provide a high degree of molecular complexity from structurally simple molecules. These reactions are typically economic and more environmentally friendly as they avoid the isolation of unstable intermediates and reduce production costs. See:
    • 24a Tietze LF. Chem. Rev. 1996; 96: 115
    • 24b Breinbauer R. Synthesis 2007; 794
    • 24c Mueller TJ. J. Angew. Chem. Int. Ed. 2007; 46: 2977
    • 24d Bogdanowicz-Szwed K, Krasodomska M, Krasodomski W. Wiad. Chem. 1997; 51: 643
    • 24e Pellissier H. Chem. Rev. 2013; 113: 442
    • 24f Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
    • 24g Tietze LF, Duefert SC, Clerc J, Bischoff M, Maass C, Stalke D. Angew. Chem. Int. Ed. 2013; 52: 3191
  • 25 Secondary alcohol 20a is highly unstable to column chromatographic purification and the sodium borohydride reduction of 3-acetylindole in EtOH at r.t. gave single compound 20a, which was used directly in the control experiment without any further purification.
  • 26 The reaction intermediate might be unstable at 100 °C and may decompose before it reacts. This speculation might explain the low yield at 100 °C. Intermediate 20a might be somewhat stable at 80 °C, the temperature at which it gives the maximum yield. At lower temperature, product formation may be sluggish.
  • 27 Ganguly NC, Mondal P, Barik SK. Green Chem. Lett. Rev. 2012; 5: 73
  • 28 Ramachandiran K, Muralidharan D, Perumal PT. Tetrahedron Lett. 2011; 58: 5
  • 29 Xu HY, Zi Y, Xu XP, Wang SY, Ji SJ. Tetrahedron 2013; 69: 1600
  • 30 Thirupathi P, Kim SS. J. Org. Chem. 2010; 75: 5240
  • 31 Mendes SR, Thurow S, Fortes MP, Penteado F, Lenardão EJ, Alves D, Perin G, Jacob RG. Tetrahedron Lett. 2012; 53: 5402