Synlett 2013; 24(20): 2679-2682
DOI: 10.1055/s-0033-1339896
letter
© Georg Thieme Verlag Stuttgart · New York

A Carbohydrate-Based Approach for the Total Synthesis of Xyolide

Debendra K. Mohapatra*
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: mohapatra@iict.res.in
,
D. Prabhakar Reddy
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: mohapatra@iict.res.in
,
Dnyaneshwar S. Karhale
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: mohapatra@iict.res.in
,
Jhillu S. Yadav
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: mohapatra@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 16 August 2013

Accepted after revision: 05 September 2013

Publication Date:
28 October 2013 (online)


Abstract

We have achieved a total synthesis of xyolide, a bioactive nonenolide, by following a carbohydrate-based approach starting from d-(–)-ribose. The key reactions involved epoxide opening with a long-chain aliphatic Grignard reagent, Yamaguchi esterification, and a ring-closing-metathesis reaction. The longest linear sequence was nine steps and the overall yield was 30%.

Supporting Information

 
  • References and Notes


    • For a review on synthetic, biosynthetic, and pharmacological aspects of decanolides, see:
    • 1a Dräger G, Kirschning A, Thiericke R, Zerlin M. Nat. Prod. Rep. 1996; 13: 365
    • 1b Ferraz HM. C, Bombonato FI, Longo LS. Jr. Synthesis 2007; 3261
    • 1c Riatto VB, Pilli RA, Victor MM. Tetrahedron 2008; 64: 2279
    • 2a Yuzikhin O, Mitina G, Berestetskiy A. J. Agric. Food Chem. 2007; 55: 7707
    • 2b Evidente A, Cimmino A, Berestetskiy A, Mitina G, Andolfi A, Motta A. J. Nat. Prod. 2008; 71: 31
  • 3 Rivero-Cruz JS, Macías M, Cerda-García-Rojas CM, Mata R. J. Nat. Prod. 2003; 66: 511
  • 4 Rivero-Cruz JF, García-Aguirre G, Cerda-García-Rojas CM, Mata R. Tetrahedron 2000; 56: 5337
  • 5 Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C. J. Antibiot. (Tokyo) 2004; 57: 559
  • 6 Baraban EG, Morin JB, Phillips GM, Phillips AJ, Strobel SA, Handelsman J. Tetrahedron Lett. 2013; 54: 4058
    • 7a Gradillas A, Pérez-Castells J. Angew. Chem. Int. Ed. 2006; 45: 6086
    • 7b Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
    • 7c Grubbs RH. Tetrahedron 2004; 60: 7117
    • 7d Prunet J. Angew. Chem. Int. Ed. 2003; 42: 2826
    • 7e Love JA In Handbook of Metathesis . Grubbs RH. Wiley-VCH; Weinheim: 2003
    • 7f Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 7g Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 7h Maier ME. Angew. Chem. Int. Ed. 2000; 39: 2073
    • 7i Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
    • 7j Armstrong SK. J. Chem. Soc., Perkin Trans. 1 1998; 371
    • 7k Gerlach K, Quitschalle M, Kalesse M. Tetrahedron Lett. 1999; 40: 3553
    • 7l Nevalainen M, Koskinen AM. P. Angew. Chem. Int. Ed. 2001; 40: 4060
    • 8a Mohapatra DK, Reddy DP, Dash U, Yadav JS. Tetrahedron Lett. 2011; 52: 151
    • 8b Mohapatra DK, Somaiah R, Rao MM, Caijo F, Mauduit M, Yadav JS. Synlett 2010; 1223
    • 8c Mohapatra DK, Dash U, Naidu PR, Yadav JS. Synlett 2009; 2129
    • 8d Mohapatra DK, Sahoo G, Ramesh DK, Sastry GN. Tetrahedron Lett. 2009; 50: 5636
    • 8e Mohapatra DK, Rahman H, Pal R, Gurjar MK. Synlett 2008; 1801
    • 8f Mohapatra DK, Ramesh DK, Giardello MA, Chorghade MS, Gurjar MK, Grubbs RH. Tetrahedron Lett. 2007; 48: 2621
    • 8g Gurjar MK, Karmakar S, Mohapatra DK. Tetrahedron Lett. 2004; 45: 4525
    • 8h Gurjar MK, Nagaprasad R, Ramana CV, Karmakar S, Mohapatra DK. ARKIVOC 2005; (iii): 237
    • 8i Mohapatra DK, Yellol GS. ARKIVOC 2005; (iii): 144
    • 8j Mohapatra DK, Durugkar KA. ARKIVOC 2004; 146
    • 8k Mohapatra DK, Yellol GS. ARKIVOC 2003; (ix): 21
  • 9 Moon HY, Choi WJ, Kim HO, Jeong LS. Tetrahedron: Asymmetry 2002; 13: 1189
  • 10 Choi WJ, Moon HR, Kim HL, Yoo BN, Lee JA, Shink DH, Jeong LS. J. Org. Chem. 2004; 69: 2634
  • 11 Srihari P, Kumaraswamy B, Yadav JS. Tetrahedron 2009; 65: 6304
  • 12 Analytical Data for 13 [α]D 27 +11.3 (c 1.0, CHCl3). IR (neat): 3458, 2957, 2896, 1470, 1256, 1086, 924, 837 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.04 (m, 1 H), 5.45–5.29 (m, 2 H), 4.64 (m, 1 H), 3.97 (dd, J = 1.7, 6.4 Hz, 1 H) 3.66 (m, 1 H), 1.75–1.67 (m, 2 H), 1.48 (s, 3 H), 1.37 (s, 3 H), 1.36–1.23 (m, 10 H), 0.88 (t, J = 7.0 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 134.6, 118.2, 108.5, 80.6, 78.3, 69.8, 33.6, 31.7, 29.5, 29.1, 27.7, 25.2, 25.0, 22.5, 14.0. MS (ESI): m/z = 279 [M + Na]+.
  • 13 Lipshutz BH, Sengupta S. Org. React. (N. Y.) 1992; 41: 135
  • 14 Kumar PC, Sai NS, Ravinder M, Singam NK, Rao VJ. Synthesis 2011; 451
    • 15a Trygstad TM, Pang Y, Forsyth CJ. J. Org. Chem. 2009; 74: 910
    • 15b Yu P, Li C, Guozhu Z, Liming Z. J. Am. Chem. Soc. 2009; 131: 5062
    • 15c Pradhan TR, Mohapatra DK. Tetrahedron: Asymmetry 2012; 23: 709
    • 16a Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
    • 16b Mohapatra DK, Bhimireddy E, Krishnarao PS, Das PP, Yadav JS. Org. Lett. 2011; 13: 744
  • 17 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 415
    • 18a Balkrishna SB, Childers WE. Jr, Pinnick HW. Tetrahedron 1981; 37: 2091
    • 18b Dalcanale E, Montanari F. J. Org. Chem. 1986; 51: 567
  • 19 Analytical Data for 14: [α]D 27 +11.6 (c 1.8, CHCl3). IR (neat): 3462, 3083, 2927, 2857, 1460, 1379, 1216, 1168, 1055, 925, 874 cm–1. 1H NMR (300 MHz, CDCl3): δ = 5.77 (m, 1 H), 5.22–5.06 (m, 2 H), 4.21 (q, J = 5.8 Hz, 1 H), 2.47–2.36 (m, 2 H), 1.90–1.76 (m, 2 H), 0.89 (s, 9 H), 0.52 (s, 3 H), 0.3 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 180.2, 140.5, 114.5, 72.3, 32.2, 29.4, 25.7, 18.1, −5.0, −4.5. MS (ESI): m/z = 267 [M + Na]+.
  • 20 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 21 Analytical Data for 12: [α]D 27 +22.6 (c 1.5, CHCl3). IR (neat): 3081, 2929, 2858, 1740, 1464, 1377, 1253, 1215, 1167, 1122, 1074, 925, 838, 725 cm–1. 1H NMR (300 MHz, CDCl3): δ = 5.86–5.70 (m, 2 H), 5.37–5.03 (m, 4 H), 4.91 (dt, J = 3.4, 7.4 Hz, 1 H), 4.6 (t, J = 7.2 Hz, 1 H), 4.22–4.13 (m, 2 H), 2.34–2.25 (m, 2 H), 1.83–1.37 (m, 2 H), 1.48 (s, 3 H), 1.37 (s, 3 H), 1.34–1.22 (m, 12 H), 0.91 (s, 9 H), 0.88 (t, J = 7.0 Hz, 3 H), 0.51 (s, 3 H), 0.32 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 172.6, 140.6, 133.2, 118.3, 114.3, 108.6, 78.8, 78.3, 72.3, 71.7, 32.5, 31.7, 31.1, 29.6, 29.4, 29.1, 27.4, 25.7, 25.1, 24.4, 22.5, 18.1, 14.0, −4.5, −4.9. MS (ESI): m/z = 505 [M + Na]+.
  • 22 Analytical Data for 11: [α]D 27 +28.8 (c 2.1, CHCl3). IR (neat): 3474, 3083, 2957, 2928, 2858, 1739, 1459, 1427, 1380, 1250, 1216, 1067, 993, 927, 874 cm–1. 1H NMR (300 MHz, CDCl3): δ = 5.90–5.76 (m, 2 H), 5.37–5.12 (m, 4 H), 4.92 (dt, J = 3.4, 7.6 Hz, 1 H), 4.61 (m, 1 H), 4.21–4.15 (m, 2 H), 2.47–2.32 (m, 2 H), 1.92–1.84 (m, 2 H), 1.81 (m, 1 H), 1.69 (m, 1 H), 1.48 (s, 3 H), 1.37 (s, 3 H), 1.31–1.23 (m, 10 H), 0.87 (t, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 172.8, 140.3, 133.0, 118.4, 115.0, 108.7, 78.7, 78.2, 72.0, 71.9, 31.7, 31.4, 31.0, 30.2, 29.4, 29.0, 27.4, 25.1, 24.5, 22.5, 14.0. MS (ESI): m/z = 391 [M + Na]+.
  • 23 Analytical Data for 10: [α]D 27 +47.2 (c 0.7, CHCl3). IR (neat): 3484, 3082, 2956, 2928, 2858, 1737, 1459, 1378, 1166, 1065, 927, 874 cm–1. 1H NMR (300 MHz, CDCl3): δ = 5.81 (dd, J = 3.3, 15.8 Hz, 1 H), 5.65 (ddd, J = 1.8, 8.7, 15.8 Hz, 1 H), 4.92 (m, 1 H), 4.68 (m, 1 H), 4.16 (m, 1 H), 3.96 (q, J = 4.7, 10.0 Hz, 1 H), 2.34 (m, 1 H), 2.11–2.01 (m, 2 H), 1.78 (m, 1 H), 1.64 (m, 1 H), 1.46 (m, 1 H), 1.54 (s, 3 H), 1.37 (s, 3 H), 1.32–1.20 (m, 10 H), 0.86 (t, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 175.0, 128.1, 126.2, 109.2, 78.4, 75.5, 75.5, 70.8, 33.5, 31.8, 31.6, 31.1, 29.2, 29.0, 28.3, 26.1, 24.3, 22.5, 13.9. MS (ESI): m/z = 363 [M + Na]+.
  • 24 Kobayashi Y, Okui H. J. Org. Chem. 2000; 65: 612
  • 25 Analytical Data for Xyolide (1): [α]D 27 +2.6 (c 1.2, CHCl3). IR (neat): 3613, 3497, 3044, 1744, 1694, 1377, 1059, 968, 772 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.86 (dd, J = 1.4, 15.8 Hz, 1 H), 5.49 (ddd, J = 1.7, 9.3, 15.8 Hz, 1 H), 5.14 (m, 1 H), 4.99 (td, J = 2.2, 9.6 Hz, 1 H), 4.50 (br s, J = 1.3, 1.9 Hz, 1 H), 3.56 (dd, J = 1.9, 9.6 Hz, 1 H), 2.67–2.62 (m, 2 H), 2.61–2.51 (m, 2 H), 2.37–2.31 (m, 1 H), 2.09–1.96 (m, 3 H), 1.92–1.83 (m, 1 H), 1.59–1.49 (m, 1 H), 1.33–1.20 (m, 10 H), 0.87 (t, J = 6.7 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 176.1, 174.5, 171.60, 132.7, 123.4, 76.4, 73.1, 72.4, 70.8, 31.7, 31.4, 31.2, 29.5, 29.4, 29.3, 29.1, 28.8, 24.5, 22.6, 14.0. MS (ESI): m/z = 423 [M + Na]+, 399 [M − H]+.