Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(18): 2393-2396
DOI: 10.1055/s-0033-1339839
DOI: 10.1055/s-0033-1339839
letter
Phase-Transfer Catalysis: Mixing Effects in Continuous-Flow Liquid/Liquid O- and S-Alkylation Processes
Further Information
Publication History
Received: 05 August 2013
Accepted after revision: 22 August 2013
Publication Date:
13 September 2013 (online)
Abstract
This article describes detailed studies on the importance of mixing effects in the O- and S-alkylation of selected phenol and thiophenol substrates. Direct comparison between various continuous-flow reactors and a batch microwave reactor demonstrates the excellent mixing properties of the flow devices, which improve the reaction outcome.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Starks CM, Liotta CL, Halpern M In Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. Chapman & Hall; New York: 1994. and references herein
- 2 DeZani D, Colombo M. J. Flow. Chem. 2012; 1: 5
- 3 Ji J, Zhao Y, Guo L, Liu B, Ji C, Yang P. Lab Chip 2012; 12: 1373
- 4a McKillop A, Fiaud J.-C, Hug RP. Tetrahedron 1974; 30: 1379
- 4b Branko J. Tetrahedron 1988; 44: 6677
- 4c Jin G, Ido T, Goto S. Catal. Today 2001; 64: 279
- 4d Yadav G. Top. Catal. 2004; 29: 145
- 4e Coleman MT, LeBlanc G. Org. Process Res. Dev. 2010; 14: 732
- 5 Aljbour S, Yamada H, Tagawa T. Chem. Eng. Process. 2009; 48: 1167
- 6 Aljbour S, Yamada H, Tagawa T. Top. Catal. 2010; 53: 694
- 7a Herriot AW, Picker D. J. Am. Chem. Soc. 1975; 97: 2345
- 7b Reeves WP, Bothwell TC, Rudis JA, McClusky JV. Synth. Commun. 1982; 12: 1071
- 7c Waghmode TW, Pathre GS, Pai NR. J. Chem. Pharm. Res. 2012; 4: 1589
- 8a Denmark SE, Weintraub RC, Gould ND. J. Am. Chem. Soc. 2012; 134: 13415
- 8b Yadav GD, Badure OV. Clean Technol. Environ. Policy 2009; 11: 163
- 8c Yadav GD, Desai NM. J. Mol. Catal. A: Chem. 2006; 243: 278
- 8d Yadav GD, Lande SV. Appl. Catal. A: Gen. 2005; 287: 267
- 8e Herriot AW, Picker D. Tetrahedron Lett. 1972; 4521
- 8f Yadav GD, Bisht PM. J. Mol. Catal. A: Chem. 2004; 223: 93
- 9a Wirth T In Microreactors in Organic Chemistry and Catalysis. Wiley-VCH; Weinheim: 2013
- 9b Kockmann N In Transport Phenomena in Micro Process Engineering . Springer; Berlin/Heidelberg: 2008
- 9c Hessel V, Renken A, Schouten JC, Yoshida J In Micro Process Engineering . Wiley-VCH; Weinheim: 2009
- 9d Wiles C, Watts P In Micro Reaction Technology in Organic Synthesis . CRC Press; Boca Raton: 2011
- 10 Ueno M, Hisamoto H, Kitamori T, Kobayashi S. Chem. Commun. 2003; 8: 936
- 11 de Bellefon C, Tanchoux N, Caravielhes S, Grenouillet P, Hessel V. Angew. Chem. Int. Ed. 2010; 39: 3442
- 12 Ahmed B, Barrow D, Wirth T. Adv. Synth. Catal. 2006; 348: 1043
- 13 Reichart B, Tekautz G, Kappe CO. Org. Process Res. Dev. 2013; 17: 152
- 14 For information about the Biotage Initiator, see: http://www.biotage.com.
- 15a Damm M, Gutmann B, Kappe CO. ChemSusChem 2013; 6: 978
- 15b Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q. ChemSusChem 2013; 6: 746
- 16 Kockmann N, Roberge DM. Chem. Eng. Process. 2011; 50: 1017
- 17 For information about the Syrris Asia system, see: http://syrris.com.
- 18 For a recent review, see: Glasnov TN, Kappe CO. Chem. Eur. J. 2011; 17: 11956
- 19 Synthesis of 1,3,5-Trimethyl-2-[(phenylmethyl)thio]-benzene: A: Batch Microwave Conditions: Into a 5-mL microwave Pyrex process vial equipped with a magnetic stir bar organic stock solution A (2 mL; 0.2 M 2,4,6-trimethylthiophenol and 0.24 M benzyl bromide in CH2Cl2) and aq stock solution D [2 mL; 0.6 M K2CO3 and 0–2 mM (0–1 mol%) TBAB] were placed. The vial was sealed with a Teflon septum fitted in an aluminum crimp top and heated in the microwave reactor for 1–10 min (fixed hold time) at 70–100 °C (3–18 bar). After cooling to 45 °C, the reaction mixture was immediately quenched with 2 M aq HCl to reach pH <2. After 2 min of vigorous stirring the aqueous phase was separated via syringe and 10 μL aliquots of the organic phase were subjected to HPLC analysis (λ = 215 nm). 1,3,5-Trimethyl-2-[(phenylmethyl)thio]benzene was isolated by phase separation from the basic aqueous phase, followed by H2O extraction (3 ×). The obtained organic phases were combined, dried over MgSO4, filtrated and concentrated under vacuum to provide the S-benzyl ether (88 mg, 91% yield, yellowish plates); mp 35–36 °C (lit.3: mp 36 °C). MS (APCI, –): m/z = 242.1 [M+], 241.1 [M+ – 1], 151.1 [M+ – 91]. 1H NMR (300 MHz, CDCl3): δ = 2.28 (s, 3 H), 2.37 (s, 6 H), 3.78 (s, 2 H), 6.92 (s, 2 H), 7.08–7.11 (m, 2 H), 7.22–7.25 (m, 3 H). B: Continuous Flow Conditions: For details please see the provided Supporting Information.