Synlett 2013; 24(17): 2320-2326
DOI: 10.1055/s-0033-1339666
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Efficient Synthesis of Aryl Thioethers through C–H Functionalization of Arenes

Yi-Chen Liu
Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
,
Chin-Fa Lee*
Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 21 July 2013

Accepted: 03 August 2013

Publication Date:
13 September 2013 (online)


Abstract

Microwave-assisted iridium-catalyzed meta C–H borylation followed by copper-promoted C–S bond coupling reactions in one pot is reported. This approach enables the syntheses of aryl thioethers in short reaction times (within 2.5 hours). The system shows good functional-group compatibility, as chloro, trifluoromethyl, fluoro, and pyridine groups are tolerated by the reaction conditions. Both aryl and alkyl thiols are coupled smoothly. The products were formed with excellent regioselectivity in meta position.

Supporting Information

 
  • References and Notes


    • For representative reviews, please see:
    • 1a Murai S. Activation of Unreactive Bonds and Organic Synthesis. Springer; Berlin: 1999: 48
    • 1b Dyker G. Handbook of C–H Transformations. Applications in Organic Synthesis. Wiley-VCH; Weinheim: 2005
    • 1c Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 1d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1e Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 1f Park YJ, Park JW, Jun CH. Acc. Chem. Res. 2008; 41: 222
    • 1g Díaz-Requejo MM, Pérez PJ. Chem. Rev. 2008; 108: 3379
    • 1h Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 2b Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 2c Deng G, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278; Angew. Chem. 2008, 120, 6374
    • 2d Wen J, Zhang J, Chen S.-Y, Li J, Yu X.-Q. Angew. Chem. Int. Ed. 2008; 47: 8897 ; Angew. Chem. 2008, 120, 9029
    • 2e Ban I, Sudo T, Taniguchi T, Itami K. Org. Lett. 2008; 10: 3607
    • 2f Ryu J, Cho SH, Chang S. Angew. Chem. Int. Ed. 2012; 51: 3677 ; Angew. Chem. 2012, 124, 3737
    • 3a Li Z, Capretto DA, Rahaman RO, He C. J. Am. Chem. Soc. 2007; 129: 12058
    • 3b Shi Z, Cui Y, Jiao N. Org. Lett. 2010; 12: 2908
    • 3c Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 3d Li B.-J, Wang H.-Y, Zhu Q.-L, Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 3948 ; Angew. Chem. 2012, 124, 4014
    • 4a Giri R, Chen X, Yu J.-Q. Angew. Chem. Int. Ed. 2005; 44: 2112 ; Angew. Chem. 2005, 117, 2150
    • 4b Mei T.-S, Wang D.-H, Yu J.-Q. Org. Lett. 2010; 12: 3140
    • 4c Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 4d Hull KL, Anani WQ, Sanford MS. J. Am. Chem. Soc. 2006; 128: 7134
  • 5 Chen X, Hao S.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 6 Zhao Z, Dimitrijevic E, Dong VM. J. Am. Chem. Soc. 2009; 131: 3466
  • 7 Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732
  • 8 Anbarasan P, Neumann H, Beller M. Chem. Commun. 2011; 47: 3233
  • 9 Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 10a Liu G, Huth JR, Olejniczak ET, Mendoza R, De Vries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 10b De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri RJ. J. Med. Chem. 2004; 47: 6120

      For reviews on transition-metal-catalyzed C–S coupling reaction, see:
    • 11a Eichman CC, Stambuli JP. Molecules 2011; 16: 590
    • 11b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 ; Angew. Chem. 2003, 115, 5558
    • 11c Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
    • 11d Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 11e Procter D. J. Chem. Soc., Perkin Trans. 1 2001; 335
    • 11f Beletskaya IP, Ananikov VP. Eur. J. Org. Chem. 2007; 3431

      For representative examples of palladium-catalyzed C–S bond formation, see:
    • 12a Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 12b Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 12c Fernández-Rodríguez MA, Shen Q, Hartwig JF. Chem. Eur. J. 2006; 12: 7782
    • 12d Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 12e Sayah M, Organ MG. Chem. Eur. J. 2011; 17: 11719

      For representative examples of copper-catalyzed C–S bond formation, see:
    • 13a Kao H.-L, Chen C.-K, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2011; 1776
    • 13b Kao H.-L, Lee C.-F. Org. Lett. 2011; 13: 5204
    • 13c Sahoo K, Jamir L, Guin S, Patei BK. Adv. Synth. Catal. 2010; 352: 2538
    • 13d Chen C.-K, Chen Y.-W, Lin C.-H, Lin H.-P, Lee C.-F. Chem. Commun. 2010; 46: 282
    • 13e Larsson P.-F, Correa A, Carril M, Norrby P.-O, Bolm C. Angew. Chem. Int. Ed. 2009; 48: 5691 ; Angew. Chem. 2009, 121, 5801
    • 13f Verma AK, Singh J, Chaudhary R. Tetrahedron Lett. 2007; 48: 7199
    • 13g Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 13h Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005

      For representative examples of nickel-catalyzed C–S bond formation, see:
    • 14a Zhang Y, Ngeow KN, Ying J. Org. Lett. 2007; 9: 3495
    • 14b Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 14c Screttas CG, Smonou IC. J. Organomet. Chem. 1988; 342: 143
  • 15 For cobalt-catalyzed C–S bond formation, see: Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613

    • For indium-catalyzed C–S bond formation, see:
    • 16a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 16b Reddy VP, Kumar AV, Swapna K, Rao K. Org. Lett. 2009; 11: 1697

      For iron-catalyzed C–S bond formation, see:
    • 17a Lin Y.-Y, Wang Y.-J, Lin C.-H, Cheng J.-H, Lee C.-F. J. Org. Chem. 2012; 77: 6100
    • 17b Wu J.-R, Lin C.-H, Lee C.-F. Chem. Commun. 2009; 4450
    • 17c Qiu J.-W, Zhang X.-G, Tang R.-Y, Zhong P, Lia J.-H. Adv. Synth. Catal. 2009; 351: 2319
    • 17d Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880 ; Angew. Chem. 2008, 120, 2922

      For rhodium-catalyzed C–S bond formation, see:
    • 18a Arisawa M, Suzuki T, Ishikawa T, Yamaguchi M. J. Am. Chem. Soc. 2008; 130: 12214
    • 18b Ajiki K, Hirano M, Tanaka K. Org. Lett. 2005; 7: 4193
    • 18c Lai C.-S, Kao H.-L, Wang Y.-J, Lee C.-F. Tetrahedron Lett. 2012; 53: 4365
    • 18d Arisawa M, Ichikawa T, Yamaguchi M. Org. Lett. 2012; 14: 5318

      For manganese-catalyzed C–S bond formation, see:
    • 19a Liu T.-J, Yi C.-L, Chan C.-C, Lee C.-F. Chem. Asian J. 2013; 8: 1029
    • 19b Bandaru M, Sabbavarpu NM, Katla R, Yadavalli VD. N. Chem. Lett. 2010; 39: 1149
  • 20 Cheng C.-H, Ramesh C, Kao H.-L, Wang Y.-J, Chan C.-C, Lee C.-F. J. Org. Chem. 2012; 77: 10369
    • 21a Cheng J.-H, Yi C.-L, Liu T.-J, Lee C.-F. Chem. Commun. 2012; 48: 8440
    • 21b Yi C.-L, Liu T.-J, Cheng J.-H, Lee C.-F. Eur. J. Org. Chem. 2013; 3910

      For selected examples, see:
    • 22a Chen HY, Schlecht S, Semple TC, Hartwig JF. Science 2000; 287: 1995
    • 22b Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi N, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
    • 22c Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
    • 22d Cho JY, Iverson CN, Smith MR. J. Am. Chem. Soc. 2000; 122: 12868
    • 22e Cho JY, Tse MK, Holmes DR, Maleczka E, Smith MR. Science 2002; 295: 305
    • 22f Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536 ; Angew. Chem. 2012, 124, 551
    • 22g Liu T, Shao X, Wu Y, Shen Q. Angew. Chem. Int. Ed. 2012; 51: 540 ; Angew. Chem. 2012, 124, 555
    • 22h Crawford AG, Liu Z, Mkhalid IA. I, Thibault M.-H, Schwarz N, Alcaraz G, Steffen A, Collings JC, Batsanov AS, Howard JA. K, Marder TB. Chem. Eur. J. 2012; 18: 5022
    • 22i Liskey CW, Liao X, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
    • 22j Boebel TA, Hartwig JF. Tetrahedron 2008; 64: 6824
    • 24a Kappe CO, Dallinger D, Murphree SS In Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols. Wiley-VCH; Weinheim: 2009
    • 24b Microwave Methods in Organic Synthesis, In Topics in Current Chemistry . Vol. 266. Larhed M, Olafsson K. Springer; Berlin, Heidelberg: 2006
    • 24c Microwave in Organic Synthesis . Loupy A. Wiley-VCH; Weinheim: 2006. 2nd ed.

      For recent reviews on microwave-promoted reactions, see:
    • 25a Kappe CO. Chem. Soc. Rev. 2008; 37: 1127
    • 25b Coquerel Y, Rodriguez J. Eur. J. Org. Chem. 2008; 1125
    • 25c Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
    • 25d Larhed M, Moberg C, Hallberg A. Acc. Chem. Res. 2002; 35: 717

      For selected examples on microwave-assisted reactions, see:
    • 26a Erdélyi M, Gogoll A. J. Org. Chem. 2003; 68: 6431
    • 26b Erdélyi M, Gogoll A. J. Org. Chem. 2001; 66: 4165
    • 26c Chen Y, Markina NA, Larock RC. Tetrahedron 2009; 65: 8908
    • 26d Shook BC, Chakravarty D, Jackson PF. Tetrahedron Lett. 2009; 50: 1013
    • 26e Sedelmeier J, Ley SV, Lange H, Baxendale IR. Eur. J. Org. Chem. 2009; 4412
    • 26f Awuah E, Capretta A. Org. Lett. 2009; 11: 3210
    • 26g Huang H, Liu H, Jiang H, Chen K. J. Org. Chem. 2008; 73: 6037
    • 27a Harrisson P, Morris J, Marder TB, Steel PG. Org. Lett. 2009; 11: 3586
    • 27b Rentzsch CF, Tosh E, Herrmann WA, Kühn FE. Green Chem. 2009; 11: 1610
  • 28 General Procedure for the Synthesis of Compounds 2aq A flask equipped with a magnetic stirrer bar was charged with [Ir(cod)OMe)]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol) and pin2B2 (254 mg, 1.0 mmol) in a nitrogen-filled glove box. This flask was then covered with a rubber septum and removed from the glove box. Under a nitrogen atmosphere, arene (1.0 mmol) and MTBE (2.0 mL) were added via syringe, and the reaction vessel was placed under microwave irradiation at 80 °C. After stirring at this temperature for 1 h, the heterogeneous mixture was cooled to r.t., after removal of the volatile components under vacuum. The flask was returned to the glove box, Cu(OAc)2 (136 mg, 0.75 mmol) was added, the flask was then covered with a rubber septum and removed from the glove box. Under an argon atmosphere, aryl thiol (0.5 mmol), pyridine (0.123 mL, 1.5 mmol), and DMF (2.0 mL) were added via syringe, and the reaction vessel was placed under microwave irradiation at 135 °C. After stirring at this temperature for 1.5 h, the heterogeneous mixture was cooled to r.t. and diluted with EtOAc (20 mL). The resulting solution was directly filtered through a pad of silica gel then washed with EtOAc (20 mL) and concentrated to give the crude material which was then purified by column chromatography (SiO2, hexane) to yield 2. Data for some representative examples are shown here. 3-Chloro-5-methylphenyl Phenyl Sulfide (2a) 21a Following the general procedure, using [Ir(cod)OMe]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for the first step. After removal of the volatile components under vacuum, Cu(OAc)2 (136 mg, 0.75 mmol), thiophenol (0.053 mL, 0.5 mmol), and DMF (2.0 mL) were used, then purified by column chromatography (SiO2, hexane) to provide 2a as a colorless oil (70.0 mg, 60% yield). 1H NMR (400 MHz, CDCl3): δ = 2.23 (s, 3 H), 6.97–7.04 (m, 3 H), 7,25–7.38 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.0, 126.6, 127.5, 127.7, 128.7, 129.3, 132.0, 134.1, 134.4, 138.0, 140.4 ppm. 3-Chloro-5-methylphenyl 4-Methoxyphenyl Sulfide (2b) 21a Following the general procedure, using [Ir(cod)OMe)]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for the first step. After removal of the volatile components under vacuum, Cu(OAc)2 (136 mg, 0.75 mmol), 4-methoxy-thiophenol (0.063 mL, 0.5 mmol), and DMF (2.0 mL) were used, then purified by column chromatography (SiO2, hexane) to provide 2b as a colorless oil (62.0 mg, 47% yield). 1H NMR (400 MHz, CDCl3): δ = 2.20 (s, 3 H), 3.78 (s, 3 H), 6.82–6.90 (m, 5 H), 7.39–7.41 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.1, 55.2, 115.0, 122.7, 124.0, 126.1, 126.3, 134.3, 136.0, 140.1, 140.7, 160.1 ppm. 3-Chloro-5-methylphenyl 3-Trifluoromethyl Phenyl Sulfide (2c) Following the general procedure, using [Ir(cod)OMe]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for the first step. After removal of the volatile components under vacuum, Cu(OAc)2 (136 mg, 0.75 mmol), 3-trifluoro-methylthiophenol (0.070 mL, 0.5 mmol), and DMF (2.0 mL) were used, then purified by column chromatography (SiO2, hexane) to provide 2c as a colorless oil (118.0 mg, 78% yield). 1H NMR (400 MHz, CDCl3): δ = 2.29 (s, 3 H), 7.08 (d, J = 7.6 Hz, 2 H), 7.14 (s, 1 H), 7.40–7.49 (m, 3 H), 7.58 (s, 1 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 123.6 (q, J = 271.1 Hz), 123.9 (q, J = 3.7 Hz), 127.1 (q, J = 3.9 Hz) 128.3, 128.8, 129.7, 130.3, 131.6 (q, J = 32.4 Hz), 133.7, 134.8, 135.6, 136.9, 141.0 ppm. 19F NMR (376 MHz, CDCl3): δ = –64.4 (s) ppm. HRMS (EI): m/z calcd for C14H10F3ClS: 302.0144; found: 302.0148. 3-Chloro-5-methylphenyl 4-Chlorophenyl Sulfide (2d) 21a Following the general procedure, using [Ir(cod)OMe)]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for the first step. After removal of the volatile components under vacuum, Cu(OAc)2 (136 mg, 0.75 mmol), 4-chlorothio-phenol (74 mg, 0.5 mmol), and DMF (2.0 mL) were used, then purified by column chromatography (SiO2, hexane) to provide 2d as a colorless oil (0.081 g, 65% yield). 1H NMR (400 MHz, CDCl3): δ = 2.27 (s, 3 H), 6.98 (s, 1 H), 7.03 (s, 1 H), 7.05 (s, 1 H), 7.29 (s, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.1, 127.0, 128.0, 129.1, 129.5, 133.0, 133.1, 133.8, 134.6, 137.3, 140.7 ppm. 3-Chloro-5-methylphenyl 4-Fluorophenyl Sulfide (2e) 21b Following the general procedure, using [Ir(cod)OMe)]2 (99.0 mg, 0.015 mmol), 4,4′-di-tert-butyl-2,2′-dipyridyl (82.0 mg, 0.03 mmol), pin2B2 (254 mg, 1.0 mmol), and 3-chlorotoluene (0.123 mL, 1.0 mmol) in MTBE (2.0 mL) for the first step. After removal of the volatile components under vacuum, Cu(OAc)2 (0.1362 g, 0.75 mmol), 4-fluoro-thiophenol (0.055 mL, 0.5 mmol), and DMF (2.0 mL) were used, then purified by column chromatography (SiO2, hexane) to provide 2e as a colorless oil (63.0 mg, 50% yield). 1H NMR (400 MHz, CDCl3): δ = 2.26 (s, 3 H), 6.91 (s, 1 H), 6.95 (s, 1 H), 6.98 (s, 1 H), 7.03–7.08 (m, 2 H), 7.40–7.43 (m, 2 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 21.1, 116.6, 116.7, 125.7, 127.3, 127.8, 128.7, 128.7, 134.6, 135.0, 135.0, 138.8, 140.5, 161.9, 163.6 ppm. 19F NMR (376 MHz, CDCl3): δ = –114.3 (s) ppm.