Synlett 2013; 24(15): 2006-2008
DOI: 10.1055/s-0033-1339548
letter
© Georg Thieme Verlag Stuttgart · New York

An Unconventional Synthesis of Dibromophosphines

Lili Wang
a  College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: [email protected]
,
Lujun Zhang
a  College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: [email protected]
,
Hanyu Shi
a  College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: [email protected]
,
Zheng Duan*
a  College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: [email protected]
,
François Mathey*
a  College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. of China   Email: [email protected]
b  Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Fax: +65(679)11961   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 09 June 2013

Accepted after revision: 16 July 2013

Publication Date:
14 August 2013 (online)


Abstract

Dibromophosphines, RPBr2, are obtained by reaction of tetrabromomethane with 7-substituted 7-phosphanorbornenes in toluene at ca. 100 °C. The phosphanorbornenes are obtained in situ by cycloaddition of N-phenylmaleimide with 1-substituted 3,4-dimethylphospholes. The overall reaction sequence shows a good compatibility with functional groups.

Supporting Information

 
  • References and Notes

  • 1 Pietrusiewicz KM, Stankevič M. Science of Synthesis . Vol. 42. Mathey F. Georg Thieme; Stuttgart: 2009: 243
  • 2 Tian R, Duan Z, Zhou X, Geng D, Wu Y, Mathey F. Chem. Commun. 2009; 2589
  • 3 Tian R, Liu H, Duan Z, Mathey F. J. Am. Chem. Soc. 2009; 131: 16008
  • 4 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA. Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision B.05 2003
  • 5 Greenwood NN, Earnshaw A. Chemistry of the Elements . Pergamon; Oxford: 1984: 568
  • 6 Appel R. Angew. Chem. Int. Ed. 1975; 14: 801
  • 7 Mathey F, Mercier F. Tetrahedron Lett. 1981; 22: 319
  • 8 Synthesis of 6: A solution of 3,4-dimethyl-1-phenyl-phosphole (0.5 mL, 2.65 mmol) and N-phenylmaleimide (0.45 g, 2.65 mmol) in toluene was stirred at 100 °C for 3 h (31P NMR: δ = 47.3 ppm). Then CBr4 (0.44 g, 1.3 mmol) was added to the solution and heated at 100 °C for 1 h (31P NMR: δ = 150.6 ppm). The solution was added to W(CO)5(MeCN) (2.65 mmol) in THF and the mixture was stirred at 50 °C for 10 h. After evaporation of the solvents, the residue was extracted with hexane and purified by chromatography on silica gel at –10 °C with petroleum ether as the eluent to yield 6 as a yellow liquid (0.23 g, yield: 15%). 1H NMR (CDCl3): δ = 7.49–7.63 (m, 3 H), 7.97–8.04 (m, 2 H). 13C NMR (CDCl3): δ = 128.69 (d, 3 J C–P = 11.1 Hz, 2 × CH), 129.06 (d, 2 J C–P = 17.1 Hz, 2 × CH), 132.58 (d, 4 J C–P = 1.7 Hz, CH), 141.44 (d, J C–P = 18.8 Hz, P–C), 195.60 (td, J C–P = 7.5 Hz, cis CO), 198.37 (d, J C–P = 45.7 Hz, trans CO). 31P NMR (CDCl3): δ = 79.4 (t, J P–W = 329.1 Hz).
  • 9 General Procedure for 5: CBr4 was added to the solution of 7-phosphanorbornenes in toluene and heated at 90–120 °C for 10 min to 4 h. The reactions were monitored by 31P NMR spectroscopy. 4a: 31P NMR (toluene): δ = 150.6, 4b: 31P NMR (toluene): δ = 152.1, 4c: 31P NMR (toluene): δ = 129.0, 4d: 31P NMR (toluene): δ = 151.1, 4e: 31P NMR (toluene): δ = 172.4. The solution was cooled to 0 °C, and Et2NH was added. After the mixture was warmed to r.t. and stirred for 30 min, S8 was added and reacted for 1 h. The mixture was filtered through silica to remove salts and concentrated. Purification was performed via column chromatography on silica gel. 5a: 1H NMR (CDCl3): δ = 1.04 (t, J H–H = 7.1 Hz, 12 H, Me), 3.07–3.20 (m, 8 H, CH2), 7.38–7.45 (m, 3 H), 7.92–8.00 (m, 2 H). 13C NMR (CDCl3): δ = 13.31 (d, 3 J C–P = 4.0 Hz, Me), 39.19 (d, 2 J C–P = 4.2 Hz, CH2), 128.01 (d, 2 J C–P = 13.2 Hz, o-Ph), 130.81 (d, 4 J C–P = 2.9 Hz, p-Ph), 131.44 (d, 3 J C–P = 10.6 Hz, m-Ph), 135.45 (d, J C–P = 124.3 Hz, P–C). 31P NMR (CDCl3): δ = 77.6. HRMS (ESI): m/z [M + Na]+ calcd for C14H25N2PSNa: 307.1374; found: 307.1375. 5b: 1H NMR (CDCl3): δ = 1.04 (t, J H–H = 7.2 Hz, 12 H, Me), 3.07–3.19 (m, 8 H, CH2), 3.84 (s, 3 H, OMe), 6.93 (dd, 4 J H–P = 2.7 Hz, J H–H = 9.0 Hz, 2 H, m-Ph), 7.88 (dd, 3 J H–P = 12.6 Hz, J H–H = 9.0 Hz, 2 H, o-Ph). 13C NMR (CDCl3): δ = 13.37 (d, 3 J C–P = 4.1 Hz, Me), 39.20 (d, 2 J C–P = 4.3 Hz, CH2), 55.28 (s, OMe), 113.41 (d, 2 J C–P = 14.4 Hz, o-Ph), 126.68 (d, J C–P = 130.4 Hz, P–C), 133.39 (d, 3 J C–P = 12.0 Hz, m-Ph), 161.70 (d, 4 J C–P = 3.2 Hz, p-Ph). 31P NMR (CDCl3): δ = 77.0. HRMS (ESI): m/z [M + Na]+ calcd for C15H27N2OPSNa: 337.1479; found: 337.1483. Anal. Calcd for C15H27N2OPS: C, 57.30; H, 8.66; N, 8.91. Found: C, 58.12; H, 8.65; N, 8.01. 5c: 1H NMR (CDCl3): δ = 1.09 (t, J H–H = 7.1 Hz, 12 H, Me), 3.14–3.25 (m, 8 H, CH2), 7.01 (dd, J H–P = 5.1 Hz, J H–H = 3.6 Hz, 1 H, Th-CH), 7.15 (dd, J H–P = 2.7 Hz, J H–H = 3.8 Hz, 1 H, Th-CH), 7.24 (m, 2 H, Th-CH), 7.46 (dd, J H–P = 8.0 Hz, J H–H = 3.6 Hz, 1 H, Th-CH). 13C NMR (CDCl3): δ = 13.34 (d, 3 J C–P = 4.2 Hz, Me), 39.14 (d, 2 J C–P = 4.5 Hz, CH2), 124.07 (d, 2 J C–P = 14.2 Hz, Th-CH), 124.60 (s, Th-CH), 125.42 (s, Th-CH), 128.01 (s, Th-CH), 135.34 (d, 3 J C–P = 9.4 Hz, Th-CH), 136.45 (s, Th-CH), 137.18 (d, J C–P = 134.0 Hz, P–C), 144.21 (d, 4 J C–P = 6.0 Hz, Th-C). 31P NMR (CDCl3): δ = 65.8. HRMS (ESI): m/z [M + Na]+ calcd for C16H25N2PS3Na: 395.0815; found: 395.0817. Anal. Calcd for C16H25N2PS3: C, 51.58; H, 6.76; N, 7.52. Found: C, 51.11; H, 6.71; N, 6.57. 5d: 1H NMR (CDCl3): δ = 1.16 (t, J H–H = 7.1 Hz, 12 H, Me), 3.15–3.41 (m, 8 H, CH2), 7.41–7.60 (m, 3 H), 7.70 (ddd, J = 1.2, 7.2, 16.5 Hz, 1 H), 7.84 (d, J H–H = 7.8 Hz, 1 H), 7.92 (d, J H–H = 8.4 Hz, 1 H), 9.00 (d, J H–H = 8.4 Hz, 1 H). 13C NMR (CDCl3): δ = 14.15 (d, 3 J C–P = 2.4 Hz, Me), 40.64 (d, 2 J C–P = 4.8 Hz, CH2), 124.31 (d, J C–P = 14.8 Hz), 126.21 (s), 126.44 (s), 127.77 (d, 4 J C–P = 5.4 Hz), 128.67 (d, 4 J C–P = 1.7 Hz), 130.35 (d, 3 J C–P = 9.4 Hz), 131.30 (d, J C–P = 124.6 Hz, P–C), 132.35 (d, 3 J C–P = 3.4 Hz), 132.70 (d, 2 J C–P = 10.9 Hz), 134.39 (d, 3 J C–P = 10.4 Hz). 31P NMR (CDCl3): δ = 73.4. HRMS (ESI): m/z [M + Na]+ calcd for C18H27N2PSNa: 357.1530; found: 357.1528. Anal. Calcd for C18H27N2PS: C, 64.64; H, 8.14; N, 8.38. Found: C, 64.61; H, 8.37; N, 7.79. 5e: 1H NMR (CDCl3): δ = 1.00 (t, J H–H = 7.2 Hz, 12 H, Me), 2.96–3.18 (m, 8 H, Et), 3.41 (d, J H–P = 14.7 Hz, 2 H, P–CH2), 7.21–7.31 (m, 3 H), 7.40–7.43 (m, 2 H). 13C NMR (CDCl3): δ = 13.93 (d, 3 J C–P = 3.6 Hz, Me), 39.61 (d, 2 J C–P = 3.4 Hz, CH2), 39.66 (d, J C–P = 84.7 Hz, P–CH2), 126.82 (d, 5 J C–P = 3.7 Hz, p-Ph), 127.92 (d, 4 J C–P = 3.2 Hz, 2 × C, m-Ph), 130.67 (d, 3 J C–P = 5.7 Hz, 2 × C, o-Ph), 132.49 (d, 2 J C–P = 6.1 Hz). 31P NMR (CDCl3): δ = 81.9. HRMS (ESI): m/z [M + Na]+ calcd for C15H27N2PSNa: 321.1530; found: 321.1526.
  • 10 4f: 1H NMR (CDCl3): δ = 7.13–7.69 (m, 7 H), 8.36 (ddd, J = 1.5, 3.3, 7.8 Hz, 1 H). 13C NMR (CDCl3): δ = 124.23 (d, 4 J C–P = 5.0 Hz, C–Br), 127.43 (s), 129.32 (d, J C–P = 3.2 Hz), 129.53 (s), 130.25 (s), 131.65 (d, J C–P = 5.0 Hz), 132.29 (s), 132.75 (s), 133.74 (d, J C–P = 1.5 Hz), 137.50 (d, J C–P = 62.1 Hz, P–C), 139.41 (d, 3 J C–P = 8.3 Hz), 143.15 (d, 2 J C–P = 43.9 Hz). 31P NMR (CDCl3): δ = 150.2.
  • 11 Vincent E, Verdonck L, Van der Kelen GP. J. Mol. Struct. 1980; 65: 239
  • 12 Nelson JH. Nuclear Magnetic Resonance Spectroscopy . Pearson Education; Upper Saddle River, N.J.: 2003: 172
  • 13 5f: 1H NMR (CDCl3): δ = 0.96 (t, J H–H = 7.2 Hz, 6 H, Me), 1.09 (t, J H–H = 7.2 Hz, 6 H, Me), 2.78–3.09 (m, 6 H, CH2), 3.21–3.31 (m, 2 H, CH2), 7.16–7.30 (m, 4 H), 7.40–7.50 (m, 2 H), 7.58–7.60 (m, 1 H), 7.90 (dd, J = 12.4, 7.6 Hz, 1 H). 13C NMR (CDCl3): δ = 13.6 (d, 3 J C–P = 5.2 Hz, Me), 13.7 (d, 3 J C–P = 2.0 Hz, Me), 39.7 (d, 2 J C–P = 4.5 Hz, CH2), 39.9 (d 2 J C–P = 3.8 Hz, CH2), 124.4 (s, C–Br), 126.0 (s), 127.1 (d, J C–P = 11.5 Hz), 128.7 (s), 130.0 (d, J C–P = 2.8 Hz), 131.4 (s), 131.6 (d, J C–P = 7.2 Hz), 132.2 (s), 133.0 (d, J C–P = 125.5 Hz, P–C), 133.4 (d, J C–P = 11.9 Hz), 142.3 (d, 3 J C–P = 3.9 Hz), 144.9 (d, 2 J C–P = 11.8 Hz). 31P NMR (CDCl3): δ = 73.1. HRMS (ESI): m/z [M + Na]+ calcd for C20H28N2PSBrNa: 461.0792; found: 461.0792. Anal. Calcd for C20H28N2PSBr: C, 54.67; H, 6.42. Found: C, 55.45; H, 6.34.