Synlett 2013; 24(15): 1941-1944
DOI: 10.1055/s-0033-1339472
letter
© Georg Thieme Verlag Stuttgart · New York

Synthetic Study towards Strictamine: The Oxidative Coupling Approach

Weiwu Ren
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: [email protected]
,
Nicholas Tappin
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: [email protected]
,
Qian Wang
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: [email protected]
,
Jieping Zhu*
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 30 May 2013

Accepted after revision: 25 June 2013

Publication Date:
07 August 2013 (online)


Abstract

A synthetic approach featuring a key intramolecular oxidative coupling of a dianion for the formation of the C7–C16 bond was exploited aiming at the synthesis of strictamine. Treatment of substituted tetrahydrocarboline with LHMDS at –78 °C followed by iodine at room temperature afforded a tetracyclic compound, a substructure of eburnane-type alkaloid, via the formation of the ­Na–C16 bond.

Supporting Information

 
  • References and Notes

    • 1a Schnoes HK, Biemann K, Mokry J, Kompis I, Chatterjee A, Ganguli G. J. Org. Chem. 1966; 31: 1641
    • 1b Pousset J.-L, Poisson J, Olivier L, Le Man J, Janot M.-M. C. R. Hebd. Seances Acad. Sci. 1965; 261: 5538
  • 2 Ahmad Y, Fatima K, Rahman A, Occolowitz JL, Solheim BA, Clardy J, Garnick RL, Le Quesne PW. J. Am. Chem. Soc. 1977; 99: 1943
    • 3a Hugel G, Royer D, Men-Olivier LL, Richard B, Jacquier M.-J, Levy J. J. Org. Chem. 1997; 62: 578
    • 3b Ramirez A, Garcia-Rubio S. Curr. Med. Chem. 2003; 10: 1891
  • 4 Scott AI. Acc. Chem. Res. 1970; 3: 151

    • Closing ring E via formation of C6–C7 bond, see:
    • 5a Dolby LJ, Nelson SJ. J. Org. Chem. 1973; 38: 2882
    • 5b Bennasar M.-L, Zulaica E, López M, Bosch J. Tetrahedron Lett. 1988; 29: 2361
    • 5c Bennasar M.-L, Zulaica E, Ramírez A, Bosch J. J. Org. Chem. 1996; 61: 1239
    • 5d Kawano M, Kiuchi T, Negishi S, Tanaka H, Hoshikawa T, Matsuo J, Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 906

    • Closing ring E via formation of C7–C16 bond, see:
    • 5e Dolby LJ, Esfandiabi Z. J. Org. Chem. 1972; 37: 43
    • 5f Koike T, Takayama H, Sakai S.-I. Chem. Pharm. Bull. 1991; 39: 1677
    • 5g Edwankar RV, Edwankar CR, Namjoshi OA, Deschamps JR, Cook JM. J. Nat. Prod. 2012; 75: 181

    • Closing ring E via formation of C15–C16 bond, see:
    • 5h Komatsu Y, Yoshida K, Ueda H, Tokuyama H. Tetrahedron Lett. 2013; 54: 377
    • 6a Baran PS, Richter JM. J. Am. Chem. Soc. 2004; 126: 7450
    • 6b Baran PS, Richter JM. J. Am. Chem. Soc. 2005; 127: 15394
    • 6c Baran PS, Guerrero CA, Ambhaikar NB, Hafensteiner BD. Angew. Chem. Int. Ed. 2005; 44: 606
    • 6d Baran PS, DeMartino MP. Angew. Chem. Int. Ed. 2006; 45: 7083
    • 6e Baran PS, Ambhaikar NB, Guerrero CA, Hafensteiner BD, Lin DW, Richter JM. ARKIVOC 2006; 310
    • 6f Richter JM, Whitefield BW, Maimone TJ, Lin DW, Castroviejo MP, Baran PS. J. Am. Chem. Soc. 2007; 129: 12857
    • 6g Richter JM, Idhihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J. Am. Chem. Soc. 2008; 130: 17938
    • 7a Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2008; 130: 7568
    • 7b Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2010; 132: 4894
    • 8a Zuo Z, Xie W, Ma D. J. Am. Chem. Soc. 2010; 132: 13226
    • 8b Zuo Z, Ma D. Angew. Chem. Int. Ed. 2011; 50: 12008
    • 8c Zi W, Xie W, Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 8d Fan F, Xie W, Ma D. Org. Lett. 2012; 14: 1405
  • 9 Guo F, Clift MD, Thomson RJ. Eur. J. Org. Chem. 2012; 4881
  • 10 Wenkert E, Wickberg B. J. Am. Chem. Soc. 1965; 87: 1580
  • 11 Diker K, de Maindreville MD, Lévy J. Tetrahedron Lett. 1995; 36: 2497
    • 12a Brooks DW, Lu LD. L, Masamune S. Angew. Chem., Int. Ed. Engl. 1979; 18: 72
    • 12b Gonzalez GI, Zhu J. J. Org. Chem. 1999; 64: 914
    • 13a Johnson F. Chem. Rev. 1968; 68: 375
    • 13b Hoffmann RW. Chem. Rev. 1989; 89: 1841
  • 14 Various oxidants have been screened, including: Cu(II) salts [copper(II) 2-ethylhexanoate, copper(II) chloride, copper(II) 2-pyrazinecarboxylate, copper(II) acetate, copper(II) trifluoromethanesulfonate, copper(II) acetylacetonate, copper(II) trifluoroacetylacetonate], Fe(III) salts {iron(III) chloride, iron(III) acetylacetonate, ferrocenium hexafluorophosphate, [Fe(DMF)3Cl2][FeCl4]}, Mn(III) salts [manganese(III) acetate, manganese(III) acetylacetonate], Co(II) salts [cobalt(II) acetylacetonate, cobalt(II) acetate], silver(I) trifluoromethanesulfonate, palladium(II) acetate, titanium tetrachloride, and ceric ammonium nitrate.
  • 15 Shen L, Zhang M, Wu Y, Qin Y. Angew. Chem. Int. Ed. 2008; 47: 3618
  • 16 Wang L, Prabhudas B, Clive DL. J. J. Am. Chem. Soc. 2009; 131: 6003
  • 17 Yamanaka E, Nakayama K, Yanagishima N, Nagashima K, Yamauchi M, Sakai S. Chem. Pharm. Bull. 1980; 28: 2527

    • Selected recent examples of oxidative C–N bond formation:
    • 18a Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
    • 18b Kobayashi Y, Kuroda M, Toba N, Okada M, Tanaka R, Kimachi T. Org. Lett. 2011; 13: 6280
    • 18c Kim HJ, Kim J, Cho SH, Chang S. J. Am. Chem. Soc. 2011; 133: 16382
    • 18d Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
    • 18e West SP, Bisai A, Lim AD, Narayan RR, Sarpong R. J. Am. Chem. Soc. 2009; 131: 11187
  • 19 Procedure for the Preparation of Compound 13 To a solution of methyl malonate 9 (48.0 mg, 0.1 mmol) in THF (1.0 mL, 0.1 M) was added dropwise LHMDS (0.22 mL, 1.0 M in THF, 0.22 mmol) at –78 °C. After 10 min, the reaction mixture was warmed to r.t. and a solution of iodine (52.0 mg, 0.2 mmol) in THF (0.2 mL) was added. The reaction was stirred at r.t. for 10 min, and then quenched with Na2S2O3 (aq). The aqueous phase was extracted with EtOAc. The combined organic layers were dried over Na2SO4, and the volatiles were removed in vacuo. The residue was purified by flash column chromatography (CH2Cl2–acetone = 150:1) to yield 13 as a yellow foam (32.0 mg, 69%). IR (neat): 2925, 2854, 1739, 1454, 1229, 1159 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.73 (d, J = 8.2 Hz, 2 H), 7.38–7.36 (m, 1 H), 7.29 (d, J = 8.2 Hz, 2 H), 7.13–7.07 (m, 3 H), 4.46 (dd, J = 11.8, 4.2 Hz, 1 H), 3.90 (s, 3 H), 3.76 (ddd, J = 13.4, 4.4, 4.4 Hz, 1 H), 3.61 (s, 3 H), 3.50 (ddd, J = 13.4, 8.8, 3.6 Hz, 1 H), 2.94–2.89 (m, 1 H), 2.75–2.69 (m, 1 H), 2.66–2.61 (m, 1 H), 2.51–2.43 (m, 1 H), 2.41 (s, 3 H), 2.39–2.32 (m, 1 H), 2.04–1.94 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 169.5, 168.0, 143.8, 137.9, 136.7, 131.7, 130.1, 127.7, 127.3, 122.4, 120.7, 118.3, 112.6, 109.9, 68.4, 53.7, 53.2, 53.1, 44.7, 32.1, 27.4, 21.7, 21.3. ESI-HRMS: m/z [M + H]+ calcd for C25H27N2O6S: 483.1590; found: 483.1598.
  • 20 Csákÿ AG, Plumet J. Chem. Soc. Rev. 2001; 30: 313
  • 21 Rathke MW, Lindert A. J. Am. Chem. Soc. 1971; 93: 4605
  • 22 Brocksom TJ, Petragnani N, Rodrigues R, La Scala Teixeira H. Synthesis 1975; 396
  • 23 Schlitter E, Furlenmeier A. Helv. Chim. Acta 1953; 36: 2017
  • 24 Hájíček J. Collect. Czech. Chem. Commun. 2011; 76: 2023