Synlett 2013; 24(19): 2535-2539
DOI: 10.1055/s-0033-1339471
cluster
© Georg Thieme Verlag Stuttgart · New York

Guanidine-Catalyzed γ-Selective Morita–Baylis–Hillman Reactions on α,γ-Dialkyl-Allenoates: Access to Densely Substituted Heterocycles

Philipp Selig*
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Landoltweg 1, 52074 Aachen, Germany   Fax: +49(241)8092127   Email: philipp.selig@rwth-aachen.de
,
Aleksej Turočkin
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Landoltweg 1, 52074 Aachen, Germany   Fax: +49(241)8092127   Email: philipp.selig@rwth-aachen.de
,
William Raven
b  Institute of Inorganic Chemistry, RWTH Aachen University, Germany
› Author Affiliations
Further Information

Publication History

Received: 27 June 2013

Accepted: 27 June 2013

Publication Date:
26 July 2013 (online)


Abstract

N-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) was discovered as an excellent catalyst for the Morita–Baylis–­Hillman reaction for previously hard-to-activate α,γ-dialkyl allenoate substrates. The obtained densely substituted allenic alcohols, which are generally inaccessible with other Lewis base catalysts, could be further converted into 2,5-dihydrofuran and 2H-pyran-2-one heterocyclic structures with challenging substitution patterns.

Supporting Information

 
  • References

  • 1 Superbases for Organic Synthesis . Ishikawa T. John Wiley and Sons; Chichester: 2009
  • 2 Caubere P. Chem. Rev. 1993; 93: 2317

    • For recent reviews, see:
    • 3a Selig P. Synthesis 2013; 45: 703
    • 3b Terada M. J. Synth. Org. Chem. Jpn. 2010; 68: 1159
    • 3c Ishikawa T. Chem. Pharm. Bull. 2010; 58: 1555
    • 3d Leow D, Tan C.-H. Chem. Asian J. 2009; 4: 488
    • 4a Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 4b Fu X, Tan C.-H. Chem. Commun. 2011; 47: 8210
    • 5a Coles MP. Chem. Commun. 2009; 3659
    • 5b Kiesewetter MK, Scholten MD, Kirn N, Weber RL, Hedrick JL, Waymouth RM. J. Org. Chem. 2009; 74: 9490
  • 6 Maji B, Stephenson DS, Mayr H. ChemCatChem 2012; 4: 993
  • 7 Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906

    • For reviews on allenoate activations, see:
    • 8a Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074 ; Angew. Chem. 2012, 124, 3128
    • 8b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 8c Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102

      For selected reviews on phosphine catalysis, see:
    • 9a Fan YC, Kwon O In Asymmetric Organocatalysis . List B. Thieme; Stuttgart: 2012: 723
    • 9b Marinetti A, Voituriez A. Synlett 2010; 174
    • 9c Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 9d Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem.; 2008, 120, 1584
    • 9e Methot JL, Roush WilliamR. Adv. Synth. Catal. 2004; 346: 1035

      For examples regarding umpolung reactions of γ-alkyl allenoates, see:
    • 10a Xu S, Zhou L, Zeng S, Ma R, Wang Z, He Z. Org. Lett. 2009; 11: 3498
    • 10b Xu S, Zhou L, Ma R, Song H, He Z. Chem. Eur. J. 2009; 15: 8698
    • 10c Ma R, Xu S, Tang X, Wu G, He Z. Tetrahedron 2011; 67: 1053
    • 10d Li E, Huang Y, Liang L, Xie P. Org. Lett. 2013; 15: 3138

      For examples regarding umpolung reactions of α-alkyl allenoates, see:
    • 11a Xu S, Zhou L, Ma R, Song H, He Z. Org. Lett. 2010; 12: 544
    • 11b Xu S, Zou W, Wu G, Song H, He Z. Org. Lett. 2010; 12: 3556
    • 11c Wang T, Ye S. Org. Lett. 2010; 12: 4168
    • 11d Khong SN, Tran YS, Kwon O. Tetrahedron 2010; 66: 4760
    • 11e Martin TJ, Vakhshori VG, Tran YS, Kwon O. Org. Lett. 2011; 13: 2586
    • 12a Tsuboi S, Kuroda H, Takatsuka S, Fukawa T, Sakai T, Utaka M. J. Org. Chem. 1993; 58: 5952
    • 12b Zhu X.-F, Henry CE, Wang J, Dudding T, Kwon O. Org. Lett. 2005; 7: 1387
    • 12c Zhu X.-F, Schaffner A.-P, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
    • 12d Creech GS, Kwon O. Org. Lett. 2008; 10: 429
    • 12e Creech GS, Zhu X.-F, Fonovic B, Dudding T, Kwon O. Tetrahedron 2008; 64: 6935
    • 13a Selig P, Turočkin A, Raven W. Adv. Synth. Catal. 2013; 355: 297
    • 13b Selig P, Turočkin A, Raven W. Chem. Commun. 2013; 49: 2930
  • 14 We intentionally avoid the expression ‘vinylogous Morita–Baylis–Hillman reaction’, as this term is now generally used to describe the related Rauhut–Currier reaction. For a review, see: Aroyan CE, Dermenci A, Miller SJ. Tetrahedron 2009; 65: 4069
  • 15 For the synthesis of similar products by Brønsted base catalysis, see: Xu B, Hammond GB. Angew. Chem. Int. Ed. 2008; 47: 689 ; Angew. Chem. 2008, 120, 701
  • 16 Zhao G.-L, Shi M. Org. Biomol. Chem. 2005; 3: 3686
    • 17a Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6295
    • 17b Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 48: 2030
  • 18 For a recent review, see: Krause N. In Innovative Catalysis in Organic Chemistry . Andersson PG. Wiley-VCH; Weinheim: 2012: 195
  • 19 Marshall JA, Sehon CA. J. Org. Chem. 1995; 60: 5966
  • 20 Gockel B, Krause N. Org. Lett. 2006; 8: 4485
    • 21a CCDC-945270 contains the supplementary crystallog-raphic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
    • 21b Spek AL. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009; 65: 148

      For examples of the diverse bioactivity of 2-pyranones, see:
    • 22a Vara Prasad JV. N, Para KS, Lunney EA, Ortwine DF, Dunbar Jr. JB, Ferguson D, Tummino PJ, Hupe D, Tait BD, Domagala CH, Humblet C, Bhat TN, Liu B, Guerin DM. A, Baldwin ET, Erickson JW, Sawyer TK. J. Am. Chem. Soc. 1994; 116: 6989
    • 22b Kanai A, Kamino T, Kuramochi K, Kobayashi S. Org. Lett. 2003; 5: 2837