Synlett 2013; 24(13): 1697-1701
DOI: 10.1055/s-0033-1339293
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of (4′R)-Azido-(2′R)-2′-Deoxy-2′-C-Methyluridine and Its Esters by Direct Iodide Displacement

Cyril Benhaim*
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Sébastien Lemaire*
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Tim Gaekens
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Tom Govaerts
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Ioannis N. Houpis
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Peter Reniers
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Anja Van Looy
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Wim A. A. Vermeulen
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
,
Sebastian Bernhardt
b   Department Chemie und Biochemie, Ludwig-Maximilian Universität München, Butenandtstr. 5-12, Haus F, 81377 München, Germany
,
Coura Diène
b   Department Chemie und Biochemie, Ludwig-Maximilian Universität München, Butenandtstr. 5-12, Haus F, 81377 München, Germany
,
Paul Knochel
b   Department Chemie und Biochemie, Ludwig-Maximilian Universität München, Butenandtstr. 5-12, Haus F, 81377 München, Germany
,
Vittorio Farina
a   Janssen Chemical Development, Turnhoutseweg 30, 2340 Beerse, Belgium   Fax: +32(14)605755   Email: cbenhaim@its.jnj.com   Email: slemaire@its.jnj.com
› Author Affiliations
Further Information

Publication History

Received: 13 March 2013

Accepted after revision: 29 May 2013

Publication Date:
10 July 2013 (online)


Abstract

The synthesis of an anti-infective nucleoside intermediate was accomplished through direct iodine displacement at C-5′ by a tetrabutylammonium carboxylate. This approach constitutes a more efficient alternative to the traditional oxidative displacement.

 
  • References and Notes

  • 1 Maag H, Rydzewski RM, McRoberts MJ, Crawford-Ruth D, Verheyden JP. H, Prisbe EJ. J. Med. Chem. 1992; 35: 1440
  • 2 Wang Q, Hu W, Wang S, Pan Z, Tao L, Guo X, Qian K, Chen C.-H, Lee K.-H, Chang J. Eur. J. Med. Chem. 2011; 4178
  • 3 Klumpp K, Kalayanov G, Ma H, Pogam SL, Leveque V, Jiang W.-R, Inocencio N, De Witte A, Rajyaguru S, Tai E, Chanda S, Irwin MR, Sund C, Winqvist A, Maltseva T, Eriksson S, Usova E, Smith M, Alker A, Najera I, Cammack N, Martin JA, Johansson NG, Smith DB. J. Biol. Chem. 2008; 283: 2167
  • 4 Smith DB, Kalayanov G, Sund C, Winqvist A, Pinho P, Maltseva T, Morisson V, Leveque V, Rajyaguru S, Pogam SL, Najera I, Benkestock K, Zhou X.-X, Maag H, Cammack N, Martin JA, Swallow S, Johansson NG, Klumpp K, Smith M. J. Med. Chem. 2009; 52: 219
  • 5 Smith DB, Kalayanov G, Sund C, Winqvist A, Maltseva T, Leveque V, Rajyaguru S, Pogam SL, Najera I, Benkestock K, Zhou X.-X, Kaiser AC, Maag H, Cammack N, Martin JA, Swallow S, Klumpp K, Smith M. J. Med. Chem. 2009; 52: 2971
  • 6 Nilsson M, Kalayanov G, Winqvist A, Pinho P, Sund C, Zhou X.-X, Wähling H, Belfrage H.-K, Pelcman M, Agback T, Benckestock K, Wikström K, Boothee M, Lindqvist A, Rydegård C, Jonckers TH. M, Vandyck K, Raboisson P, Lin T.-I, Lachau-Durand S, De Kock H, Smith DB, Martin JA, Klumpp K, Simmen K, Vrang L, Terelius Y, Samuelsson B, Rosenquist A, Johansson NG. Bioorg. Med. Chem. Lett. 2012; 22: 3265
  • 7 Lemaire S, Houpis I, Wechselberger R, Langens J, Vermeulen WA. A, Smets N, Nettekoven U, Wang Y, Xiao T, Qu H, Liu R, Jonckers TH. M, Raboisson P, Vandyck K, Nilsson KM, Farina V. J. Org. Chem. 2011; 76: 297
    • 8a Perrone P, Daverio F, Valente R, Rajyaguru S, Martin JA, Lévêque V, Le Pogam S, Najera I, Klumpp K, Smith DB, McGuigan C. J. Med. Chem. 2007; 50: 5463
    • 8b Campeau L.-C, O’Shea PD. Synlett 2011; 57
  • 9 Houpis IN, Lemaire S, Farina V, Xiao T, Liu R, Nettekoven U, Wang Y. Synlett 2012; 23: 313
  • 10 Communication from the Belgian Federal Public Service Employment, Labour and Social Dialogue.
  • 11 Compound 2a (10 g, 44.64 mmol) was dissolved in THF (40 mL) at r.t. A suspension of benzyltriethylammonium azide in MeCN (1.4 equiv, 1.5 M) was added, followed by N-methylmorpholine (710 mg). After cooling to 0 °C, an iodine solution in THF (1.3 equiv, 1.5 M) was added dropwise, and the reaction mixture was stirred for 4 h at 0 °C. N-Methylmorpholine (7.4 g) and DMAP (500 mg) were added followed by dropwise addition of isobutyric anhydride (1.75 equiv, 13 mL). After 1 h, the reaction mixture was quenched with aq Na2SO3 (160 mL, 50 mg/mL), and H2O (7 mL) and EtOAc (80 mL) were added. The organic phase was separated and then washed with 1 M aq citric acid solution (20 mL), sat. NaHCO3 (150 mL), and brine (150 mL). The organic phase was concentrated under reduced procedure, and the crude product was crystallized from 2-PrOH–H2O (6:1, v/v, 200 mL) at 0 °C to afford 16.8 g (86%) of compound 6 as white solid. 1H NMR (360 MHz, CDCl3): δ = 1.01 (d, J = 7.3 Hz, 3 H), 1.22 (d, J = 6.9 Hz, 3 H), 1.23 (d, J = 6.9Hz, 3 H), 2.66 (sept, J = 6.9 Hz, 1 H), 3.03 (sext, J = 7.3 Hz, 1 H), 3.67 (d, J = 11.3 Hz, 1 H), 3.79 (d, J = 11.3 Hz, 1 H), 5.23 (br, 1 H), 5.84 (dd, J = 2.2, 8.05 Hz, 1 H), 6.40 (br, 1 H), 7.65 (br, 1 H), 9.71 (s, 1 H) ppm. 13C NMR (60 MHz, CDCl3): δ = 5.52, 11.87, 18.81, 33.74, 40.41, 78.47, 102.60, 149.94, 162.40, 166.87, 176.46 ppm. Compound 6′ (Figure 1) was isolated by column chromatography (Chiralcel OJ 20 μm) with EtOH as eluent. Characterization of Compound 6′ 1H NMR (400 MHz,DMSO-d 6): δ = 0.82–0.73 (m, 3 H), 1.12–0.85 (m, 6 H), 2.90–2.74 (m, 1 H), 3.36 (d, J = 11.6 Hz, 1 H), 3.58 (d, J = 11.3 Hz, 1 H), 5.26 (d, J = 6.5 Hz, 1 H), 5.69–5.47 (m, 1 H), 5.96 (d, J = 7.6 Hz, 1 H), 7.45 (d, J = 8.1 Hz, 1 H), 11.33 (s, 1 H) ppm. 13C NMR (90 MHz, DMSO-d 6): δ 10.95, 18.41, 18.56, 33.14, 41.21, 80.00, 88.39, 96.85, 101.94 ppm.
  • 12 Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, Granycome C, Hang J, Hobbs CJ, Jiang W.-R, Laxton C, Le Pogam S, Leveque V, Ma H, Maile G, Merrett JH, Pichota A, Sarma K, Smith M, Swallow S, Symons J, Vesey D, Najera I, Cammack N. Bioorg. Med. Chem. Lett. 2007; 17: 2570

    • Perisobutyric acid was freshly prepared using the reported conditions:
    • 13a Krasutsky PA, Kolomitsyn IV, Botov EM, Carlson RM, Semenova IG, Fokin AA. Tetrahedron Lett. 2002; 8687
    • 13b Evans FW, Sehon AH. Can. J. Chem. 1963; 41: 1826
    • 14a As the reaction slows down, the proportion of double structure 14 increased. The double structure resulted from the deprotonation of the uridine N–H bond followed by nucleophilic substitution at the iodine.
    • 14b TBAE and TBAA were prepared and used as organic ionic bases in cross-coupling reactions: Yang C.-T, Fu Y, Huang Y.-B, Yi J, Guo Q.-X, Liu L. Angew. Chem. Int. Ed. 2009; 48: 7398
  • 15 Preparation of Compound 12 TBAOH solution in MeOH (44.77 g, 53.94 mmol, 1 M) was added to a solution of isobutyric acid (4.75 g, 53.94 mmol) in MeOH (430 mL) at r.t. The mixture was stirred for 6 h then concentrated down. Co-evaporation with toluene to remove H2O resulted in 19.42 g of colorless solid 12 (>99% yield). 1H NMR (360 MHz, CDCl3): δ = 0.99 (t, J = 7.2 Hz, 12 H, CH3), 1.12 (d, J = 3.6 Hz, 6 H, CH3), 1.45 (br, 8 H, CH2), 1.65 (br, 8 H, CH2), 2.35 (br, 1 H, CH) 3.40 (br, 8 H, NCH2, each, 3-H) ppm. 13C NMR (90 MHz, CDCl3): δ = 14.1 (CH3), 20.2 (CH2), 21.4 (CH3), 24.5 (CH2), 38.1 (CH), 59.2 (NCH2) ppm.
  • 16 The hygroscopic solid was stored under nitrogen.
  • 17 Compound 13 was isolated by column chromatography from the reaction mixture: eluent 0.5% aq (NH4)2CO3–MeCN (70:30). 1H NMR (300 MHz, acetone-d 6): δ = 0.88 (t, J = 7.30 Hz, 3 H), 0.88 (d, J = 7.30 Hz, 3 H), 1.11 (d, J = 7.05 Hz, 6 H), 1.14 (d, J = 6.80 Hz, 6 H), 1.26 (sext, J = 7.40 Hz, 2 H), 1.49 (quin, J = 7.37 Hz, 2 H), 2.58 (quin, J = 6.80 Hz, 2 H), 2.63 (quin, J = 7.10 Hz, 1 H), 2.89–3.08 (m, 1 H), 3.80 (t, J = 7.30 Hz, 2 H), 4.44 (d, J = 12.09 Hz, 1 H), 4.53 (d, J = 12.10 Hz, 1 H), 5.42 (br s, 1 H), 5.80 (d, J = 8.06 Hz, 1 H), 6.32 (br s, 1 H), 7.72 (d, J = 8.06 Hz, 1 H) ppm. 13C NMR (101 MHz, DMSO-d 6): δ = 10.63, 13.59, 18.47, 18.50, 18.53, 18.58, 19.48, 29.03, 33.05, 33.08, 65.40, 101.15, 150.39, 161.60, 175.24, 175.53 ppm.
  • 18 Compound 14 was isolated by column chromatography from the reaction mixture: eluent 0.5% aq (NH4)2CO3–MeCN (70:30). 1H NMR (300 MHz, acetone-d 6): δ = 1.02 (d, J = 7.3 Hz, 6 H), 1.13–1.23 (m, 18 H), 2.51–2.75 (m, 3 H), 2.88–3.04 (m, 1 H), 3.05–3.21 (m, 1 H), 4.47 (d, J = 12.2 Hz, 1 H), 4.58 (d, J = 12.2 Hz, 1 H), 4.57–4.70 (m, 2 H), 5.13–5.55 (m, 2 H), 5.75 (d, J = 8.2 Hz, 1 H), 5.88 (d, J = 8.2 Hz, 1 H), 6.24–6.66 (m, 2 H), 7.68 (d, J = 8.2 Hz, 1 H), 7.78 (d, J = 8.2 Hz, 1 H), 10.35 (br s, 1 H) ppm. 13C NMR (101 MHz, acetone-d 6): δ = 11.40, 11.87, 19.12, 19.21, 19.25, 34.41, 34.44, 34.47, 34.52, 40.83, 41.64, 41.41, 77.23, 80.03, 81.33, 96.76, 97.01, 102.29, 102.81, 151.29, 152.17, 162.68, 163.59, 176.08, 176.14, 176.57, 206.32 ppm.
  • 19 Khalafi-Nezhad A, Zare A, Parhami A, Hasaninejad A, Moosavi Zare AR. J. Iran. Chem. Soc. 2008; S40
  • 20 The analogue of the doubly substituted uridine 14 with the iodide still at one of the C-6′ positions was never detected.
  • 21 Preparation of Compound 3 A mixture of 6 (463 g, 1.0 mol) and compound 12 (3–10 mol, Table 2, entries 10–13) was heated in 2-MeTHF (0.04 mol L–1) for 16 h at reflux. The reaction mixture was then cooled down to r.t. and washed with aq HCl (1 M), followed by aq Na2CO3 (2.5 w/w% solution). The organic layer was then concentrated down. Final crystallization from a mixture of 2-MeTHF and diisopropyl ether (1:5) gave 3 in a range of 62–95% yield (Table 2, entries 10–13); mp 148.6 °C. 1H NMR (360 MHz, acetone-d 6): δ = 0.99–1.10 (m, 3 H), 1.12–1.30 (m, 12 H), 2.05–2.13 (m, 3 H), 2.58–2.77 (m, 2 H), 3.23–3.04 (m, 1 H), 4.48 (d, J = 12.09 Hz, 1 H), 4.57 (d, J = 12.10 Hz, 1 H), 5.73 (d, J = 8.40 Hz, 1 H), 6.44 (br s, 1 H), 7.74 (d, J = 8.00 Hz, 1 H), 10.22 (br s, 1 H) ppm. 13C NMR (90 MHz, acetone-d 6): δ = 11.71, 19.24, 19.34, 34.17, 34.42, 40.31, 64.29, 75.73, 96.05, 103.16, 150.68, 163.18, 176.10, 176.66 ppm.
  • 22 Preparation of Compound 8 from 3 Compound 3 was successfully deprotected to furnish the sodium derivative 8. Compound 3 (500 mg) was suspended in MeOH (2.5 mL) at r.t. MeONa (1.1 equiv, 0.24 mL, 30 w%) in MeOH was added dropwise. After 30 min stirring, the solvent was reduced by half with a flow of nitrogen. Compound 8 was crystallized by dropwise addition of MBTE (15 mL) in 82% yield as sodium salt (292 mg). 1H NMR (360 MHz, DMSO): δ = 7.39 (d, J = 7.3 Hz, 1 H), 6.32 (d, J = 8 Hz, 1 H), 5.30 (d, J = 7.7 Hz, 1 H), 3.95 (d, J = 10.6 Hz, 1 H), 3.70 (s, 2 H), 2.46–2.39 (m, 1 H), 0.77 (d, J = 6.5 Hz, 3 H) ppm. 13C NMR (90 MHz, DMSO): δ = 174.1, 157.9, 138.2, 102.1, 98.7, 84.8, 74.7, 60.8, 40.8, 11.4 ppm.