Synlett 2013; 24(13): 1728-1734
DOI: 10.1055/s-0033-1339286
letter
© Georg Thieme Verlag Stuttgart · New York

(S)-Proline-Derived Catalysts for the Acylative Kinetic Resolution of Alcohols: A Remote Structural Change Allows a Complete Selectivity Switch

Oliver Gleeson
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Yurii K. Gun’ko
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Stephen J. Connon*
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
› Author Affiliations
Further Information

Publication History

Received: 03 May 2013

Accepted after revision: 27 May 2013

Publication Date:
15 July 2013 (eFirst)

Abstract

A systematic preliminary study has identified a suite of catalysts, all readily prepared and derived from (S)-proline, which differ by a remote substituent only. If this substituent is capable of hydrogen-bond donation the catalyst will promote the resolution of secondary alcohols with the opposite sense of enantiodiscrimination to that observed when the substituent is capable of accepting hydrogen bonds.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Chen C.-S, Sih C. Angew. Chem. Int. Ed. 1989; 28: 695
    • 1b Theil F. Chem. Rev. 1995; 95: 2203

      For recent reviews, see:
    • 2a Connon SJ. Lett. Org. Chem. 2006; 3: 333
    • 2b Wurz RP. Chem. Rev. 2007; 107: 5570
    • 2c Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 2d Spivey AC, Arseniyadis S. Top. Curr. Chem. 2010; 291: 233
    • 2e Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
    • 2f Pellissier H. Adv. Synth. Catal. 2011; 353: 1613

      For examples, see:
    • 3a Vedejs E, Daugulis O, Diver ST. J. Org. Chem. 1996; 61: 430
    • 3b Vedejs E, Daugulis O. J. Am. Chem. Soc. 1999; 121: 5813
    • 3c Vedejs E, Daugulis O. J. Am. Chem. Soc. 2003; 125: 4166
    • 3d MacKay JA, Vedejs E. J. Org. Chem. 2004; 69: 6934
  • 4 Mizuta S, Sadamori M, Fujimoto T, Yamamoto I. Angew. Chem. Int. Ed. 2003; 42: 3383

    • For representative examples, see:
    • 5a Vedejs E, Chen X. J. Am. Chem. Soc. 1996; 118: 1809
    • 5b Kawabata T, Nagato M, Takasu K, Fuji K. J. Am. Chem. Soc. 1997; 119: 3169
    • 5c Ruble JC, Tweddell J, Fu GC. J. Org. Chem. 1998; 63: 2794
    • 5d Spivey AC, Fekner T, Adams H. Tetrahedron Lett. 1998; 39: 8919
    • 5e Tao B, Ruble JC, Hoic DA, Fu GC. J. Am. Chem. Soc. 1999; 121: 5091
    • 5f Tao B, Ruble JC, Hoic DA, Fu GC. J. Am. Chem. Soc. 1999; 121: 10452
    • 5g Spivey AC, Fekner T, Spey SE, Adams H. J. Org. Chem. 1999; 64: 9430
    • 5h Spivey AC, Maddaford A, Fekner T, Redgrave AJ, Frampton CS. J. Chem. Soc., Perkin Trans. 1 2000; 3460
    • 5i Naraku G, Shimomoto N, Hanamoto T, Inanaga J. Enantiomer 2000; 5: 135
    • 5j Kawabata T, Yamamoto K, Momose Y, Yoshida H, Nagaoka Y, Fuji K. Chem. Commun. 2001; 2700
    • 5k Jeong K.-S, Kim S.-H, Park H.-J, Chang K.-J, Kim KS. Chem. Lett. 2002; 1114
    • 5l Priem G, Anson MS, Macdonald SJ. F, Pelotier B, Campbell IB. Tetrahedron Lett. 2002; 43: 6001
    • 5m Seitzberger JG, Dissing C, Søtofte I, Norrby P.-O, Johannsen M. J. Org. Chem. 2005; 70: 8332
    • 5n Yamada S, Misono T, Iwai Y. Tetrahedron Lett. 2005; 46: 2239
    • 5o Poisson T, Penhoat M, Papamical C, Dupas G, Dalla V, Marsais F, Levacher V. Synlett 2005; 2285
    • 5p Nguyen HV, Butler DC. D, Richards CJ. Org. Lett. 2006; 8: 769
    • 5q Nguyen HV, Motevalli M, Richards CJ. Synlett 2007; 725

      For examples, see:
    • 6a Miller SJ, Copeland GT, Papaioannou N, Horstmann TE, Ruel EM. J. Am. Chem. Soc. 1998; 120: 1629
    • 6b Jarvo ER, Copeland GT, Papaioannou N, Bonitatebus PJ, Miller SJ. J. Am. Chem. Soc. 1999; 121: 11638
    • 6c Jarvo ER, Vasbinder MM, Miller SJ. Tetrahedron 2000; 56: 9773
    • 6d Vasbinder MM, Jarvo ER, Miller SJ. Angew. Chem. Int. Ed. 2001; 40: 2824
    • 6e Ishihara K, Kosugi Y, Akakura M. J. Am. Chem. Soc. 2004; 126: 12212
    • 6f Hrdina R, Müller CE, Schreiner PR. Chem. Commun. 2010; 46: 2689

      For representative examples, see:
    • 7a Birman VB, Uffman EW, Jiang H, Li X, Kilbane CJ. J. Am. Chem. Soc. 2004; 126: 12226
    • 7b Birman VB, Jiang H. Org. Lett. 2005; 7: 3445
    • 7c Li X, Liu P, Houk KN, Birman VB. J. Am. Chem. Soc. 2008; 130: 13836
    • 7d Birman VB, Li X. Org. Lett. 2008; 10: 1115
    • 7e Zhang Y, Birman VB. Adv. Synth. Catal. 2009; 351: 2525
    • 7f Hu B, Meng M, Wang Z, Du W, Fossey JS, Hu X, Deng W.-P. J. Am. Chem. Soc. 2010; 132: 17041

      For representative examples, see:
    • 8a Oriyama T, Hori Y, Imai K, Sasaki R. Tetrahedron Lett. 1996; 37: 8543
    • 8b Oriyama T, Imai K, Hosoya T, Sano T. Tetrahedron Lett. 1998; 39: 397
    • 8c Oriyama T, Imai K, Sano T, Hosoya T. Tetrahedron Lett. 1998; 39: 3529

      For representative examples, see:
    • 9a Suzuki Y, Yamauchi K, Muramatsu K, Sato M. Chem. Commun. 2004; 2770
    • 9b Suzuki Y, Muramatsu K, Yamauchi K, Morie Y, Sato M. Tetrahedron 2006; 62: 302
    • 9c Kano T, Sasaki K, Maruoka K. Org. Lett. 2005; 7: 1347
    • 10a O’Dálaigh C, Hynes SJ, Maher DJ, Connon SJ. Org. Biomol. Chem. 2005; 3: 981
    • 10b O’Dálaigh C, Hynes SJ, O’Brien JE, McCabe T, Maher DJ, Watson GW, Connon SJ. Org. Biomol. Chem. 2006; 4: 2785
    • 10c O’Dálaigh C, Connon SJ. J. Org. Chem. 2007; 72: 7066
    • 10d Gleeson O, Tekoriute R, Gun’ko YK, Connon SJ. Chem. Eur. J. 2009; 15: 5669
    • 10e Gleeson O, Davies G.-L, Peschiulli A, Tekoriute R, Gun’ko YK, Connon SJ. Org. Biomol. Chem. 2011; 9: 7929
  • 11 Peschiulli A, Procuranti B, O’Connor CJ, Connon SJ. Nat. Chem. 2010; 2: 380
  • 12 Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
  • 13 Alvarez-Pérez M, Goldup SM, Leigh DA, Slawin AM. Z. J. Am. Chem. Soc. 2008; 130: 1836
  • 14 It is tempting to speculate that reduced access to a catalytically relevant conformation which is not the lowest energy conformation available is responsible; however a definitive explanation must await further studies.
  • 15 The data associated with 1a, 21 and their acylated/alkylated analogues are taken from ref. 10b and are included here to facilitate analysis only.
    • 16a General Procedure for the Acylative Kinetic Resolution of Secondary Alcohols 9, 17, 18, 19, and 20 Promoted by Catalyst 8 (Table 2): A 1 mL reaction vessel charged with catalyst 8 (5.0 mol%) and a small magnetic stirring bar was placed under an atmosphere of argon. The appropriate secondary alcohol was added followed by CH2Cl2 (0.20 M). After allowing the reaction mixture to equilibrate (ca. 10 min), Et3N (1.05–2.55 equiv) was added. The resulting solution was left stirring (ca. 30 min) at –60 °C, followed by the addition of acetic anhydride (1.00–2.50 equiv) via syringe. After the reaction was complete, the reaction was quenched by the addition of MeOH (10.0 equiv). Solvents were removed in vacuo. The alcohol and its ester were separated from the catalyst by passing a concentrated solution of the crude in CH2Cl2 through a pad of silica gel. Analytical data for catalyst 8: mp 79–81 °C; [α]20 D –191.5 (c = 0.85, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.02–1.10 (m, 1 H, H-17), 1.27–1.37 (m, 1 H, H-18), 1.44–1.53 (m, 1 H, H-9), 1.84–2.23 (br m, 12 H, NMe3, H-10, H-11, H-12, H-15, H-16, H-19), 2.97–3.05 (m, 2 H, H-7, H-8), 3.20–3.26 (m, 1 H, H-20), 3.44–3.52 (m, 2 H, H-13, H-14), 5.94 (dd, J = 7.0, 7.0 Hz, 1 H, H-21), 6.48 (d, J = 8.5 Hz, 1 H, H-5), 7.30–7.48 (m, 10 H, ArH), 8.14 (d, 1 H, H-6), 8.25 (s, 1 H, H-2). 13C NMR (100 MHz, CDCl3): δ = 23.4, 25.6, 27.4, 40.3, 49.1, 49.7, 51.6, 57.9, 75.9 (q), 108.5, 117.7, 126.7, 126.8, 127.1, 130.5, 131.4, 148.9 (q), 149.6 (q), 150.0 (q), 170.3 (q). IR (neat): 2950, 2870, 2831, 2786, 1631, 1584, 1396, 1136, 976, 723, 706, 682 cm–1. HRMS (ES): m/z [M + H]+ calcd for C29H35N4O: 455.2811; found: 455.2818.