Synthesis 2014; 46(16): 2220-2224
DOI: 10.1055/s-0033-1339129
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3-exo-Aroylhexahydroindoles via Sequential Gold(I)-Catalyzed Claisen-Type Rearrangement–Epimerization Reactions of cis-4-[N-Tosyl-N-(3-arylprop-2-ynyl)amino]cyclohex-2-en-1-ols

Chia-Jung Liang
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan, R. O. C.   Fax: +886(2)29324249   Email: cheyeh@ntnu.edu.tw
,
Xuan-Yi Jiang
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan, R. O. C.   Fax: +886(2)29324249   Email: cheyeh@ntnu.edu.tw
,
Ming-Chang P. Yeh*
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan, R. O. C.   Fax: +886(2)29324249   Email: cheyeh@ntnu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 18 March 2014

Accepted after revision: 22 April 2014

Publication Date:
02 June 2014 (online)


Abstract

A two-step process for the synthesis of 3-exo-aroylhexahydroindoles is described. cis-4-[N-Tosyl-N-(3-arylprop-2-ynyl)amino]cyclohex-2-en-1-ols were cycloisomerized with a catalytic amount of chloro(triphenylphosphine)gold(I)/silver(I) hexafluoroantimonate (AuPPh3Cl/AgSbF6); subsequent base treatment of the crude mixture provided 3-exo-aroylhexahydroindoles in good yields and complete stereoselectivity. A key step involving a 9-endo-dig attack of the hydroxyl group onto the gold-activated alkyne is proposed. The resulting allyl vinyl ether intermediate underwent a gold-assisted [3,3]-sigmatropic rearrangement to form 3-exo-3-aroylhexahydroindole derivatives.

Supporting Information

 
  • References

    • 1a Baldwin SW, Debenham JS. Org. Lett. 2000; 2: 99
    • 1b Mori M, Kuroda S, Zhang C.-S, Sato Y. J. Org. Chem. 1997; 62: 3263
    • 1c Rigby JH, Cavezza A, Heeg MJ. J. Am. Chem. Soc. 1998; 120: 3664
    • 1d Wipf P, Kim Y, Goldstein DM. J. Am. Chem. Soc. 1995; 117: 11106
    • 1e Johnson PD, Sohn J.-H, Rawal VH. J. Org. Chem. 2006; 71: 7899
    • 1f Schwartz BD, White LV, Banwell MG, Willis AC. J. Org. Chem. 2011; 76: 8560
    • 1g Fukuta Y, Ohshima T, Gnanadesikan V, Shibuguchi T, Nemoto T, Kisugi T, Okino T, Shibasaki M. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5433
    • 1h Wipf P, Rector SR, Takahashi H. J. Am. Chem. Soc. 2002; 124: 14848
    • 1i Guérard KC, Guérinot A, Bouchard-Aubin C, Ménard M.-A, Lepage M, Beaulieu MA, Canesi S. J. Org. Chem. 2012; 77: 2121
    • 1j Hanessian S, Dorich S, Menz H. Org. Lett. 2013; 15: 4134
    • 1k Liégault B, Tang X, Bruneau C, Renaud J.-L. Eur. J. Org. Chem. 2008; 934
    • 1l Sayago FJ, Laborda P, Calaza MI, Jiménez AI, Cativiela C. Eur. J. Org. Chem. 2011; 11: 2011
    • 1m Darses B, Michaelides IN, Sladojevich F, Ward JW, Rzepa PR, Dixon DJ. Org. Lett. 2012; 14: 1684
    • 1n Van Goietsenoven G, Andolfi A, Lallemand B, Cimmino A, Lamoral-Theys D, Gras T, Abou-Donia A, Dubois J, Lefranc F, Mathieu V, Kornienko A, Kiss R, Evidente A. J. Nat. Prod. 2010; 73: 1223
  • 2 Mori M, Uesaka N, Saitoh F, Shibasaki M. J. Org. Chem. 1994; 59: 5643
    • 3a Oppolzer W, Gaudin J.-M, Bedoya-Zurita M, Hueso-Rodriguez J, Raynham TM, Robyr C. Tetrahedron Lett. 1988; 29: 4709
    • 3b Meng T.-J, Hua Y.-M, Sun Y.-J, Zhu T, Wang S. Tetrahedron 2010; 66: 8648
  • 4 Oppolzer W, Bedoya-Zurita M, Switzer CY. Tetrahedron Lett. 1988; 29: 6433
    • 5a Zhang L, Kozmin SA. J. Am. Chem. Soc. 2005; 127: 6962
    • 5b Yeh MC. P, Pai HF, Lin ZJ, Lee BR. Tetrahedron 2009; 65: 4789
  • 6 Yeh M.-CP, Pai H.-F, Hsiow C.-Y, Wang Y.-R. Organometallics 2010; 29: 160
    • 7a Sherry BD, Toste FD. J. Am. Chem. Soc. 2004; 126: 15978
    • 7b Mauleón P, Zeldin RM, González AZ, Toste FD. J. Am. Chem. Soc. 2009; 131: 4513
  • 8 Saito A, Konishi O, Hanzawa Y. Org. Lett. 2010; 12: 372
  • 9 Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang IC, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
    • 10a Kraft ME, Hallal KM, Vidhani DV, Cran JW. Org. Biomol. Chem. 2011; 9: 7535
    • 10b Istrate FM, Gagosz F. Beilstein J. Org. Chem. 2011; 7: 878
  • 11 Yeh M.-CP, Lin M.-N, Chang W.-J, Liou J.-L, Shih Y.-F. J. Org. Chem. 2010; 75: 6031
    • 12a Teles JH, Brode S, Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
    • 12b Fukuda Y, Utimoto K. J. Org. Chem. 1991; 56: 3729
    • 12c Tian G.-Q, Shi M. Org. Lett. 2007; 9: 4917
    • 12d Barluenga J, Diéguez A, Fernández A, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2006; 45: 2091
    • 12e Leyva A, Corma A. J. Org. Chem. 2009; 74: 2067
    • 12f Marion N, Ramón RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
    • 12g Cui D.-M, Meng Q, Zheng J.-Z, Zhang C. Chem. Commun. 2009; 1577
    • 12h Kuram MR, Bhanuchandra M, Sahoo AK. J. Org. Chem. 2010; 75: 2247
    • 12i Zhou L, Liu Y, Zhang Y, Wang J. Beilstein J. Org. Chem. 2011; 7: 631
    • 12j Prasad KR, Nagaraju C. Org. Lett. 2013; 15: 2778
  • 13 Marino JP, Jaén JC. Tetrahedron Lett. 1983; 24: 441
    • 14a Mitsunobu O, Yamada M. Bull. Chem. Soc. Jpn. 1967; 40: 2380
    • 14b Mitsunobu O. Synthesis 1981; 1
    • 14c Yeh MC. P, Liang CJ, Huang TL, Hsu HJ, Tsau YS. J. Org. Chem. 2013; 78: 5521
    • 15a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
    • 15b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
    • 15c Yeh MC. P, Liang CJ, Fan CW, Chiu WH, Lo JY. J. Org. Chem. 2012; 77: 9707
  • 16 The structure elucidation of the compound was accomplished by X-ray diffraction analysis. CCDC 975323 (1b), CCDC 970652 (exo-2a), CCDC 970653 (endo-2a), CCDC 970654 (exo-2b), CCDC 970656 (exo-2f), and CCDC 970657 (exo-2h) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 17a Ghebreghiorgis T, Biannic B, Kirk BH, Ess DH, Aponick A. J. Am. Chem. Soc. 2012; 134: 16307
    • 17b Aponick A, Li CY, Biannic BA. Org. Lett. 2008; 10: 669
    • 17c Aponick A, Biannic BA. Synthesis 2008; 3356