Synlett 2013; 24(10): 1309-1310
DOI: 10.1055/s-0033-1338949
© Georg Thieme Verlag Stuttgart · New York

Copper Ferrite (CuFe2O4) Nanoparticles

Reuben Hudson
McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Email:
› Author Affiliations
Further Information

Publication History

Publication Date:
17 May 2013 (online)


Ferrite (Fe3O4) nanoparticles (NPs) have been used as a catalyst for many organic transformations[1] because their nano-scale size equates to a large surface area to volume ratio (meaning many accessible active sites).[2] Moreover, iron-based magnetic properties enable easy catalyst recovery by the application of an external magnet. The catalytic scope of iron, however, pales in comparison with that of copper. Therefore, by substituting copper within the crystal lattice, the catalytic scope is greatly expanded, while the means of easy magnetic recovery are retained. The resulting copper ferrite nanoparticles (CuFe2O4 NPs) contain copper(II) and iron(III) species. Such nanoparticles can be obtained by co-precipitation of copper(II) and iron(III) salts (Scheme [1]).[3] They are also commercially available. Herein, the catalytic scope of CuFe2O4 NPs is highlighted and reviewed.

Zoom Image
Scheme 1 Synthesis of CuFe2O4 NPs by co-precipitation[3]
  • References

    • 1a Shi F, Tse MK, Pohl M.-M, Brückner A, Zhang S, Beller M. Angew. Chem. Int. Ed. 2007; 46: 8866
    • 1b Rajabi F, Karimi N, Saidi MR, Primo A, Varma RS, Luque R. Adv. Synth. Catal. 2012; 354: 1707
    • 1c Zeng T, Song G, Moores A, Li CJ. Synlett 2010; 2002
    • 1d Zeng TQ, Chen W.-W, Cirtiu CM, Moores A, Song GH, Li CJ. Green Chem. 2010; 12: 570
    • 1e Sreedhar B, Kumar AS, Reddy PS. Tetrahedron Lett. 2010; 51: 1891
    • 1f Reddy BV. S, Krishna AS, Ganesh AV, Kumar AS. Tetrahedron Lett. 2011; 52: 1359
    • 1g Firouzabadi H, Iranpoor N, Gholinejad M, Hoseini J. Adv. Synth. Catal. 2011; 353: 125
  • 2 Yan N, Xiao C, Kou Y. Coord. Chem. Rev. 2010; 254: 1179
  • 3 Mahmoodi NM. Desalination 2011; 279: 332
    • 4a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 4b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 5 Kumar BS. P. A, Reddy KH. V, Madhav B, Ramesh K, Nageswar YV. D. Tetrahedron Lett. 2012; 53: 4595
  • 6 Ishikawak S, Hudson R, Moores A, Li C.-J. Heterocycles 2012; 86: 1023
  • 7 Panda N, Jena AK, Mohapatra S. Chem. Lett. 2011; 40: 956
  • 8 Panda N, Jena AK, Mohapatra S, Rout SR. Tetrahedron Lett. 2011; 51: 1924
  • 9 Zhang R, Liu J, Wang S, Niu J, Xia C, Sun W. ChemCatChem 2011; 3: 146
  • 10 Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 5989
  • 11 Swapna K, Murthy SN, Nageswar YV. D. Eur. J. Org. Chem. 2011; 1940
  • 12 Tasca JE, Ponzinibbio A, Diaz G, Bravo RD, Lavat A, González MG. Top. Catal. 2010; 1087
  • 13 Kantam ML, Yadav J, Laha S, Jha S. Synlett 2009; 1791
  • 14 Hudson R, Silverman J, Li C.-J, Moores A Proceedings of the 3rd International Conference on Nanotechnology; Montreal, QC, Canada, 2012; Paper No. 318.
  • 15 Kantam ML, Yadav Y, Laha S, Srinivas P, Sreedhar B, Figueras F. J. Org. Chem. 2009; 74: 4608