Synlett 2013; 24(9): 1147-1149
DOI: 10.1055/s-0033-1338932
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 5-(2-Hydroxybenzoyl)-1,3-Disubstituted Uracils

Oualid Talhi
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt
,
Diana C. G. A. Pinto
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt
,
Artur M. S. Silva*
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt
› Author Affiliations
Further Information

Publication History

Received: 20 February 2013

Accepted after revision: 19 March 2013

Publication Date:
08 April 2013 (online)


Abstract

A new synthesis of novel nucleoside analogues is reported. These 5-(2-hydroxybenzoyl)-1,3-disubstituted uracils have been prepared by the coupling of chromone-3-carboxylic acid with carbodiimides, leading to 3-chromone-N-acylureas, which underwent organocatalyzed N-cyclization and chromone ring opening. In the case of ditolylcarbodiimide, the corresponding uracil was obtained by a one-pot, uncatalyzed reaction with chromone-3-carboxylic acid.

 
  • References and Notes

    • 1a Maruyama T, Kozai S, Yamasaki T, Witvrouw M, Pannecouque C, Balzarini J, Snoeck R, Andrei G, De Clercq E. Antiviral Chem. Chemother. 2003; 14: 271
    • 1b Maruyama T, Kozai S, Demizu Y, Witvrouw M, Pannecouque C, Balzarini J, Snoeck R, Andrei G, De Clercq E. Nucleic Acids Symp. Ser. 2004; 48: 3
    • 1c Maruyama T, Kozai S, Demizu Y, Witvrouw M, Pannecouque C, Balzarini J, Snoecks R, Andrei G, De Clercq E. Chem. Pharm. Bull. 2006; 54: 325
    • 1d Maruyama T, Demizu Y, Kozai S, Witvrouw M, Pannecouque C, Balzarini J, Snoecks R, Andrei G, De Clercq E. Nucleosides, Nucleotides Nucleic Acids 2007; 26: 1553
  • 2 Isono Y, Sakakibara N, Ordonez P, Hamasaki T, Baba M, Ikejiri M, Maruyama T. Antiviral Chem. Chemother. 2011; 22: 57
  • 3 Torrence PF, Huang GF, Edwards MW, Bhooshan B, Descamps J, De Clercq E. J. Med. Chem. 1979; 22: 316
  • 4 McCormick JE, McElhinney RS. J. Chem. Soc., Perkin Trans. 1 1985; 93
    • 5a Prachayasittikul S, Sornsongkhram N, Pingaew R, Worachartcheewan A, Ruchirawat S, Prachayasittikul V. Molecules 2009; 14: 2768
    • 5b Istanbullu H, Zupko I, Alptuzun V, Erciyas E. Turk. J. Chem. 2012; 36: 583
    • 6a Copik A, Suwinski J, Walczak K, Bronikowska J, Czuba Z, Król W. Nucleosides, Nucleotides Nucleic Acids 2002; 21: 377
    • 6b Miyakoshi H, Miyahara S, Yokogawa T, Endoh K, Muto T, Yano W, Wakasa T, Ueno H, Chong KT, Taguchi J, Nomura M, Takao Y, Fujioka A, Hashimoto A, Itou K, Yamamura K, Shuto S, Nagasawa H, Fukuoka M. J. Med. Chem. 2012; 55: 6427
    • 6c Murray PE, McNally VA, Lockyer SD, Williams KJ, Stratford IJ, Jaffar M, Freeman S. Bioorg. Med. Chem. 2002; 10: 525
  • 7 Steinhagen H, Gerisch M, Mittendorf J, Schlemmer KH, Albrecht B. Bioorg. Med. Chem. Lett. 2002; 12: 3187
    • 8a Wahhab A, Leban J. Tetrahedron Lett. 2000; 41: 1487
    • 8b Spinella A, Caruso T, Pastore U, Ricart S. J. Organomet. Chem. 2003; 684: 266
    • 8c Lee CG, Gowrisankar S, Kim JN. Bull. Korean Chem. Soc. 2005; 26: 481
    • 8d Jian C, Xian H. Synth. Commun. 2009; 39: 205
  • 9 Synthesis of N,N-Disubstituted (Carbamoyl)-4-oxo-4H-chromene-3-carboxamide 3a and 3b: Chromone-3-carboxylic acid 1 (1 g, 5.26 mmol) was added to the appropriate carbodiimide 2 (5.26 mmol, 1 equiv) in CHCl3 (20 mL) and the reaction mixture was heated to reflux for 30 min. The solvent was evaporated to dryness and the resulting resinous solid was recrystallized from EtOH to afford compound 3a. In the case of 3b, the recrystallization solvent was a mixture of light petroleum and EtOAc (5:1). N-Cyclohexyl-N-(cyclohexylcarbamoyl)-4-oxo-4H-chromene-3-carboxamide (3a): Yield: 1.550 g (74%); white solid; mp 185 °C. 1H NMR (300 MHz, CDCl3): δ = 0.87–2.01 (m, 20 H, CH2-cyclohexyl), 3.40–3.53 (m, 1 H, H-1′′′), 4.19 (tt, J = 11.7, 3.8 Hz, 1 H, H-1′′), 6.49 (d, J = 7.2 Hz, 1 H, 4′-NH), 7.42–7.53 (m, 2 H, H-6, H-8), 7.73 (ddd, J = 8.7, 7.1, 1.7 Hz, 1 H, H-7), 8.07 (s, 1 H, H-2), 8.22 (dd, J = 8.0, 1.7 Hz, 1 H, H-5). 13C NMR (75 MHz, CDCl3): δ = 24.4, 25.19, 25.26, 26.0, 30.7 and 32.1 (CH2-cyclohexyl), 49.7 (C-1′′′), 55.7 (C-1′′), 118.3 (C-8), 123.9 (C-3), 124.1 (C-10), 125.9 (C-6, C-5), 134.5 (C-7), 153.2 (C-3′), 154.2 (C-2), 156.1 (C-9), 162.3 (C-1′), 175.4 (C-4). MS (ESI+): m/z = 419 [C23H28N2O4 + Na]+. Anal. Calcd for C, 69.67; H, 7.12; N, 7.07. Found: C, 69.69; H, 7.14; N, 7.07. N-Isopropyl-N-(isopropylcarbamoyl)-4-oxo-4H-chromene-3-carboxamide (3b): Yield: 1.324 g (80%); white solid; mp 137–138 °C. 1H NMR (300 MHz, CDCl3): δ = 0.99 (d, J = 6.6 Hz, 6 H, 2′′′-CH3), 1.42 (d, J = 6.8 Hz, 6 H, 2′′-CH3), 3.72–3.89 (m, 1 H, H-1′′′), 4.50 (sept, J = 6.8 Hz, 1 H, H-1′′), 6.74 (br s, 1 H, 4′-NH), 7.42–7.54 (m, 2 H, H-6, H-8), 7.74 (ddd, J = 8.6, 7.1, 1.7 Hz, 1 H, H-7), 8.08 (s, 1 H, H-2), 8.23 (dd, J = 8.0, 1.7 Hz, 1 H, H-5). 13C NMR (75 MHz, CDCl3): δ = 20.7 (2′′-CH3), 21.9 (2′′′-CH3), 42.8 (C-1′′′), 48.8 (C-1′′), 118.3 (C-8), 124.1 (C-3), 124.2 (C-10), 126.0 (C-6, C-5), 134.5 (C-7), 153.2 (C-3′), 154.2 (C-2), 156.1 (C-9), 163.4 (C-1′), 175.1 (C-4). MS (ESI+): m/z = 339 [C17H20N2O4 + Na]+. Anal. Calcd for C, 64.54; H, 6.37; N, 8.86. Found: C, 64.51; H, 6.34; N, 8.84.
  • 10 Synthesis of 1,3-Disubstituted-5-(2-hydroxybenzoyl)-pyrimidine-2,4(1H,3H)-dione 4a and 4b: Chromone-3-carboxylic acid 1 (1 g, 5.26 mmol) was added to the appropriate carbodiimide 2ab (5.26 mmol, 1 equiv) in CHCl3 (20 mL). The reaction mixture was heated to reflux for 30 min. After complete consumption of 1, and formation of 3a or 3b (TLC), 4-PPy (0.04 g, 0.05 equiv) was added to the reaction mixture, which was then heated to reflux for a further 30 min. The solvent was then evaporated to dryness and the resulting resinous solid was recrystallized from EtOH to afford compound 4a or 4b. 1,3-Dicyclohexyl-5-(2-hydroxybenzoyl)pyrimidine-2,4(1H,3H)-dione 4a: Yield: 1.342 g (64%); white solid; mp 80 °C. 1H NMR (300 MHz, CDCl3): δ = 1.07–2.04 and 2.35–2.48 (m, 20 H, CH2-cyclohexyl), 4.46–4.58 (m, 1 H, H-1′), 4.84 (tt, J = 12.2, 3.7 Hz, 1 H, H-1′′), 6.85–6.91 (m, 1 H, H-5′′′′), 6.97–7.02 (m, 1 H, H-3′′′′), 7.44–7.53 (m, 2 H, H-4′′′′, H-6′′′′), 7.71 (s, 1 H, H-6), 11.77 (s, 1 H, 2′′′′-OH). 13C NMR (75 MHz, CDCl3): δ = 24.9, 25.1, 25.5, 26.1, 28.2 and 32.0 (CH2-cyclohexyl), 54.7 (C-1′′), 56.3 (C-1′), 113.0 (C-5), 118.0 (C-3′′′′), 118.5 (C-5′′′′), 119.3 (C-1′′′′), 132.5 (C-6′′′′), 136.5 (C-4′′′′), 143.0 (C-6), 150.3 and 159.8 (C-2, C-4), 162.4 (C-2′′′′), 195.4 (C-1′′′). MS (ESI+): m/z = 397 [C23H28N2O4 + H]+. Anal. Calcd for C, 69.67; H, 7.12; N, 7.07. Found: C, 69.65; H, 7.11; N, 7.05. 1,3-Diisopropyl-5-(2-hydroxybenzoyl)pyrimidine-2,4(1H,3H)-dione 4b: Yield: 0.846 g (51%); white solid; mp 128 °C. 1H NMR (300 MHz, CDCl3): δ = 1.39 (d, J = 6.8 Hz, 6 H, 2′-CH3), 1.51 (d, J = 6.9 Hz, 6 H, 2′′-CH 3), 4.95 (sept, J = 6.8 Hz, 1 H, H-1′), 5.24 (sept, J = 6.9 Hz, 1 H, H-1′′), 6.89 (ddd, J = 8.2, 7.2, 1.2 Hz, 1 H, H-5′′′′), 7.00–7.04 (m, 1 H, H-3′′′′), 7.47–7.54 (m, 2 H, H-4′′′′, H-6′′′′), 7.69 (s, 1 H, H-6), 11.79 (s, 1 H, 2′′′′-OH). 13C NMR (75 MHz, CDCl3): δ = 19.1 (2′′-CH3), 21.5 (2′-CH3), 46.6 (C-1′′), 48.8 (C-1′), 113.5 (C-5), 118.3 (C-3′′′′), 118.6 (C-5′′′′), 119.4 (C-1′′′′), 132.6 (C-6′′′′), 136.8 (C-4′′′′), 142.5 (C-6), 150.2 and 159.9 (C-2, C-4), 162.7 (C-2′′′′), 195.5 (C-1′′′). MS (ESI+): m/z = 339 [C17H20N2O4 + Na]+. Anal. Calcd for C, 64.54; H, 6.37; N, 8.86. Found: C, 64.56; H, 6.40; N, 8.90.
  • 11 Synthetic Procedure for 1,3-Ditolyl-5-(2-hydroxy-benzoyl)pyrimidine-2,4(1H,3H)-dione (4c): Chromone-3-carboxylic acid 1 (1 g, 5.26 mmol) was added to ditolylcarbodiimide 2c (1.17 g, 5.26 mmol, 1 equiv) in chloroform (20 mL) and the reaction mixture was heated to reflux for 30 min. The solvent was then evaporated to dryness and the resulting resinous solid was recrystallized from ethanol to afford 4c. Yield: 1.682 g (77%); yellowish white solid; mp 224 °C. 1H NMR (300 MHz, CDCl3): δ = 2.39 and 2.40 (s, 6 H, 4′/4′′-CH3, tolyl), 6.88 (ddd, J = 8.1, 7.2, 1.0 Hz, 1 H, H-5′′′′), 7.00 (dd, J = 8.4, 1.0 Hz, 1 H, H-3′′′′), 7.17–7.20 (m, 8 H, H-2′/2′′,6′/6′′ and H-3′/3′′,5′/5′′), 7.48 (ddd, J = 8.4, 7.2, 1.6 Hz, 1 H, 4′′′′), 7.66 (dd, J = 8.1, 1.6 Hz, 1 H, H-6′′′′), 7.94 (s, 1 H, H-6), 11.71 (s, 1 H, 2′′′′-OH). 13C NMR (75 MHz, CDCl3): δ = 21.1 and 21.2 (4′/4′′-CH3,), 114.3 (C-5), 118.1 (C-3′′′′), 118.8 (C-5′′′′), 119.3 (C-1′′′′), 126.0 and 127.8 (C-2′/2′′,6′/6′′), 130.0 and 130.2 (C-3′/3′′,5′/5′′), 131.6 (C-1′′), 132.8 (C-6′′′′), 135.8 (C-1′), 136.9 (C-4′′′′), 139.0 and 139.6 (C-4′/4′′), 147.4 (C-6), 150.3 and 160.0 (C-2, C-4), 162.7 (C-2′′′′), 194.6 (C-1′′′). MS (ESI+): m/z = 435 [C25H20N2O4 + Na]+. Anal. Calcd for C, 72.80; H, 4.89; N, 6.79. Found: C, 72.85; H, 4.91; N, 6.79.
  • 12 The described method allowed the synthesis of only 1,3-disubstituted uracil derivatives, and depends upon the range of carbodiimide derivatives and chromone-3-carboxylic acids available