Synlett 2014; 25(14): 2054-2058
DOI: 10.1055/s-0033-1338656
letter
© Georg Thieme Verlag Stuttgart · New York

MCPBA-Promoted Tandem Michael Addition–Intramolecular Cyclization of 2-Azido-β-amino Esters: Single Pot, Convenient Access to 1,2,4,5-Tetrasubstituted Imidazoles

Raghu Raj
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
,
M. S. Hundal
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
,
Vipan Kumar*
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 07 May 2014

Accepted: 30 May 2014

Publication Date:
16 July 2014 (online)


Abstract

A simple, single-pot synthesis of tetrasubstituted imidazoles has been developed through the use of MCPBA-promoted tandem Michael addition–intramolecular cyclization of 2-azido-β-amino esters.

Supporting Information

 
  • References and Notes

  • 1 Blank JW, Durant GJ, Emmett JC, Ganellin CR. Nature 1974; 248: 65
  • 2 Chary MV, Keerthysri NC, Vupallapati SV. N, Lingaiah N, Kantevari S. Catal. Commun. 2008; 9: 2013
  • 3 Ballard SA, Lodola A, Tarbit MH. Biochem. Pharmacol. 1988; 37: 4643
  • 4 Antolini M, Bozzoli A, Ghiron C, Kennedy G, Rossi T, Ursini A. Bioorg. Med. Chem. Lett. 1999; 9: 1023
  • 5 Hranjec M, Piantanida I, Kralj M, Šuman L, Pavelić K, Karminski-Zamola G. J. Med. Chem. 2008; 51: 4899
  • 6 Venkatesan S, Meera KM, Begum S. Desalination 2009; 236: 65
  • 7 Gupta P, Hameed S, Jain R. Eur. J. Med. Chem. 2004; 39: 805
  • 8 Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Vatter SW. L, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR. Nature 1994; 372: 739
  • 9 Takle AK, Brown MJ. B, Davies S, Dean DK, Francis G, Gaiba A, Hird AW, King FD, Lovell PJ, Naylor A, Reith AD, Steadman JG, Wilson DM. Bioorg. Med. Chem. Lett. 2006; 16: 378
  • 10 De Laszlo SE, Hacker C, Li B, Kim D, MacCoss M, Mantalo N, Pivnichny JV, Colwell L, Koch GE, Cascieri MA, Hagmenn WK. Bioorg. Med. Chem. Lett. 1999; 9: 641
  • 11 Schmierer R, Mildenberger H, Buerstell H. German Patent 361464, 1987 ; Chem. Abstr. 1988, 108, 37838
  • 12 Omotowa BA, Shreeve JM. Organometallics 2004; 23: 783
  • 13 Alonen A, Jansson J, Kallonen S, Kiriazis A, Aitio O, Finel M, Kostiainen R. Bioorg. Med. Chem. 2008; 36: 148
  • 14 Lindberg P, Nordberg P, Alminger T, Brandstorm A, Wallmark B. J. Med. Chem. 1986; 29: 1327
    • 15a Koike H, Konse T, Sada T, Ikeda T, Hyogo A, Hinman D, Saito H, Yanagisawa H. Ann. Rep. Sankyo Res. Lab. 2003; 55: 1
    • 15b Abrahams SL, Hazen RJ, Batson AG, Phillips AP. J. Pharmacol. Exp. Ther. 1989; 249: 359
    • 15c Leister C, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
  • 16 Polevaya L, Mavromoustakos T, Zoumboulakis P, Grdadolnik SG, Roumelioti P, Giatas N, Mutule I, Keivish T, Vlahakos DV, Iliodromitis EK, Kremastinos DT, Matsoukas J. Bioorg. Med. Chem. 2001; 9: 1639
  • 17 Grange RL, Ziogas J, North AJ, Angus JA, Schiesser CH. Bioorg. Med. Chem. Lett. 2008; 18: 1241
  • 18 Mannhold R. Drugs Future 1985; 10: 570
    • 19a Diez-Gonzalez S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 19b Poyatos M, Mata JA, Peris E. Chem. Rev. 2009; 109: 3677
    • 19c Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, Cesar V. Chem. Rev. 2011; 111: 2705
    • 20a Pinkert A, Marsh KN, Pang SS, Staiger MP. Chem. Rev. 2009; 109: 6712
    • 20b Martins MA. P, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG. Chem. Rev. 2008; 108: 2015
    • 21a Zhang Z, Xie F, Jia J, Zhang W. J. Am. Chem. Soc. 2010; 132: 15939
    • 21b Ding H, Ma C, Yang Y, Wang Y. Org. Lett. 2005; 7: 2125
    • 21c Hojabri L, Hartikka A, Moghaddam FM, Arvidsson PI. Adv. Synth. Catal. 2007; 349: 740
    • 22a Zhu H.-J, Wang J.-S, Patrick KS, Donovan JL, DeVane CL, Markowitz JS. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2007; 858: 91
    • 22b Kuroda N, Shimoda R, Wada M, Nakashima K. Anal. Chim. Acta 2000; 403: 131
    • 22c Nakashima K, Yamasaki H, Kuroda N, Akiyama S. Anal. Chim. Acta 1995; 303: 103
  • 23 Staehelin M, Burland DM, Ebert M, Miller RD, Smith BA, Twieg RJ, Volksen W, Walsh CA. Appl. Phys. Lett. 1992; 61: 1626
    • 24a Balalaie S, Arabanian A. Green Chem. 2002; 2: 274
    • 24b Kidwai M, Mothsra P, Bansal V, Somvanshi RK, Ethayathulla AS, Dey S, Singh TP. J. Mol. Catal. A: Chem. 2007; 265: 177
    • 24c Kantevari S, Vuppalapati SV. N, Biradar DO, Nagarapu L. J. Mol. Catal. A: Chem. 2007; 266: 109
    • 24d Heravi MM, Derikvand F, Bamoharram FF. J. Mol. Catal. A: Chem. 2007; 263: 112
    • 24e Nagarapu L, Apuri S, Kantevari S. J. Mol. Catal. A: Chem. 2007; 266: 104
    • 24f Karimi AR, Alimohammadi Z, Azizian J, Mohammadi AA, Mohammadizadeh MR. Catal. Commun. 2006; 7: 728
  • 25 Samai S, Nandi GC, Singh P, Singh MS. Tetrahedron 2009; 65: 10155
  • 26 Heravi MM, Derikvand F, Haghighi M. Monatsh. Chem. 2008; 139: 31
  • 27 Sadeghi B, Mirjalili BB. F, Hashemi MM. Tetrahedron Lett. 2008; 49: 2575
  • 28 Zhang C, Moran EJ, Woiwade TF, Short KM, Mjalli AM. M. Tetrahedron Lett. 1996; 37: 751
  • 29 Claiborne CF, Liverton NJ, Nguyen KT. Tetrahedron Lett. 1998; 39: 8939
  • 30 Karimi AR, Alimohammadi Z, Amini MM. Mol. Diversity 2010; 14: 635
    • 31a Balalaie S, Hashemi MM, Akhbari M. Tetrahedron Lett. 2003; 44: 1709
    • 31b Lantos I, Zhang W.-Y, Shui X, Eggleston DS. J. Org. Chem. 1993; 58: 7092
    • 31c Davidson D, Weiss M, Jelling M. J. Org. Chem. 1937; 2: 319
  • 32 Georg GI. The Organic Chemistry of β-Lactams. VCH; New York, NY: 1992. and references cited therein
    • 33a Ojima I, Shimizu N, Qiu X, Chen H.-JC, Nakahashi K. Bull. Soc. Chim. Fr. 1987; 649
    • 33b Hatanaka N, Abe R, Ojima I. Chem. Lett. 1981; 10: 1297
    • 33c Ojima I. Acc. Chem. Res. 1995; 28: 383
    • 33d Xu J. Tetrahedron 2012; 68: 10696
    • 34a Deshmukh AR, Bhawal BM, Krishnaswamy D, Govande VV, Shinkre BA, Jayanthi A. Curr. Med. Chem. 2004; 11: 1889
    • 34b Alcaide B, Almendros P. Curr. Med. Chem. 2004; 11: 1921
    • 34c Palomo C, Aizpurua JM, Ganboa I, Oiardide M. Curr. Med. Chem. 2004; 11: 1837
    • 34d Alcaide B, Almendros P, Cabrero G, Ruiz MP. Chem. Commun. 2007; 4788
    • 34e Kamath A, Ojima I. Tetrahedron 2012; 68: 10640
    • 34f Dekeukeleire S, D’hooghe M, Vanwalleghem M, Brabandt WV, De Kimpe N. Tetrahedron 2012; 68: 10827
  • 35 Singh P, Mehra V, Anand A, Kumar V, Mahajan MP. Tetrahedron Lett. 2011; 52: 5060
    • 36a Kumar K, Kumar S, Singh T, Anand A, Kumar V. Tetrahedron Lett. 2014; DOI: 10.1016/j.tetlet.2014.05.016
    • 36b Mehra V, Kumar V. Tetrahedron Lett. 2014; 55: 845
    • 36c Mehra V, Singh P, Manhas N, Kumar V. Synlett 2014; 29: 1124
    • 36d Mehra V, Kumar V. Tetrahedron 2013; 69: 3857
    • 36e Mehra V, Neetu Kumar V. Tetrahedron Lett. 2013; 54: 4763
    • 36f Mehra V, Kumar V. Tetrahedron Lett. 2013; 54: 6041
    • 36g Raj R, Mehra V, Singh P, Kumar V, Bhargava G, Mahajan MP, Handa S, Slaughter L. Eur. J. Org. Chem. 2011; 2697
  • 37 Synthesis of 1-Aryl/Alkyl-2,5-distyryl-1H-imidazole-4-carboxylic Acid Methyl Ester 4; General Procedure: To a stirred solution of β-amino esters 2 and 3 (1 mmol) in anhydrous chloroform, MCPBA (1.5 mmol) was added and the reaction mixture was heated to reflux for 10–12 h. The progress of the reaction was monitored by TLC analysis. Upon completion, the reaction was quenched with water (20 mL) and extracted with chloroform (2 × 50 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, concentrated under reduced pressure, and the residue was purified by column chromatography (ethyl acetate–hexane, 15:85) to afford 4 in good to excellent yield. 2,5-Distyryl-1-p-tolyl-1H-imidazole-4-carboxylic Acid Methyl Ester (4a): Pale-yellow solid; m.p. 122-123 °C; IR (KBr): 1617 cm–1; 1H NMR (300 MHz, CDCl3): δ = 2.52 (s, 3 H, CH3), 4.00 (s, 3 H, OCH3), 6.47 (d, J = 16.2 Hz, 2 H, olefinic-H), 7.24–7.41 (m, 14 H, ArH), 7.52 (d, J = 16.5 Hz, 1 H, olefinic-H), 7.74 (d, J = 15.9 Hz, 1 H, olefinic-H); 13C NMR (125 MHz, CDCl3): δ = 21.4, 52.0, 113.0, 114.6, 126.6, 127.0, 128.0, 128.2, 128.5, 128.6, 128.7, 130.2, 130.7, 133.3, 133.4, 135.1, 136.1, 136.7, 136.9, 140.2, 147.2, 164.1; HRMS (ESI-micrOTOF-QII): m/z [M + H]+ calcd for C28H24N2O2: 421.1838; found: 421.1847. Anal. Calcd (%) for C28H24N2O2: C, 79.98; H, 5.75; N, 6.66. Found: C, 80.12, H, 5.68, N, 6.77. X-ray Crystal Data and Structure Refinement for 4a: C28H24N2O2; monoclinic; space group P 21/c; a = 11.293 (4) Å, b = 7.318 (2) Å, c = 26.722 (9) Å, α = 90°, β = 95.244 (14)°, γ = 90°; V = 2199.1 (12) Å3; Z = 4; D calcd. = 1.270 g/cm3; μ = 0.080 mm–1, T = 100 (2) K; 2θ max = 27.61°, completeness to 2θ max = 99.4%, total reflections = 19830, independent (Rint = 0.1590), 5080 observed [I>2σ(I)]. Final R1 [I>2σ(I)] = 0.0732, wR2 (all data) = 0.1752, largest difference peak and hole 0.313 and –3.15 e.Å–3. X-ray intensity data were obtained with a Bruker Apex-II CCD diffractometer using Mo Kα (λ = 0.71069 Å). The data were processed by SAINT. Lorentz and polarization effects and empirical corrections were applied by using SADABS from Bruker. CCDC-998758 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.