Synthesis 2014; 46(09): 1243-1253
DOI: 10.1055/s-0033-1338614
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Pyridine Acrylates and Acrylamides and Their Corresponding Pyridinium Ions as Versatile Cross-Linkers for Tunable Hydrogels

Markus Mateescu
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany   Fax: +49(711)68564285   Email: sabine.laschat@oc.uni-stuttgart.de
,
Isabell Nuss
b   Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
c   Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany   Email: heike.boehm@is.mpg.de
,
Alexander Southan
d   Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie IGVP, Universität Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany   Fax: +49(711)9704200   Email: guenter.tovar@igvp.uni-stuttgart.de
e   Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstr. 12, 70569 Stuttgart, Germany
,
Hayley Messenger
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany   Fax: +49(711)68564285   Email: sabine.laschat@oc.uni-stuttgart.de
,
Seraphine V. Wegner
b   Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
c   Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany   Email: heike.boehm@is.mpg.de
,
Julia Kupka
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany   Fax: +49(711)68564285   Email: sabine.laschat@oc.uni-stuttgart.de
,
Monika Bach
d   Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie IGVP, Universität Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany   Fax: +49(711)9704200   Email: guenter.tovar@igvp.uni-stuttgart.de
e   Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstr. 12, 70569 Stuttgart, Germany
,
Günter E. M. Tovar*
d   Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie IGVP, Universität Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany   Fax: +49(711)9704200   Email: guenter.tovar@igvp.uni-stuttgart.de
e   Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstr. 12, 70569 Stuttgart, Germany
,
Heike Boehm*
b   Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
c   Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany   Email: heike.boehm@is.mpg.de
f   CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
,
Sabine Laschat*
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany   Fax: +49(711)68564285   Email: sabine.laschat@oc.uni-stuttgart.de
› Author Affiliations
Further Information

Publication History

Received: 19 December 2013

Accepted after revision: 05 February 2014

Publication Date:
06 March 2014 (online)


In memoriam Alan R. Katritzky

Abstract

A small library of cross-linkers for hydrogels was synthesized. The cross-linkers consisted of 2,6- and 3,5-diacylpyridine or 2,4,6-triacylpyridine as the core unit, which were tethered via ethylene glycol, amino ethanol, and 1,n-diamine spacers to terminal acrylate or acrylamide moieties. Esterification and amide formation of the terminal acryl units were found to be dependent on the ratio of NH/O in the spacer, the constitution pattern of the pyridine ring, and the total number of acryl groups. Thus, esters generally gave higher yields than amides decreasing with increasing number of NH in the spacer and with increasing number of acryl units. In the case of 3,5-diacylpyridine derivatives, these trends were less prominent as compared to the 2,6-diacylpyridine series, indicating that steric hindrance and unfavorable hydrogen bonding interaction of the spacers might influence the observed reactivity differences. The 3,5-diacylpyridines were converted to the N-methylpyridinium salts and selected members of both neutral and cationic 3,5-diacylpyridinium derivatives were submitted to hydrogelations with synthetic polymer poly(1-glycidylpiperazine) via aza-Michael addition and thiolated natural hyaluronan via thio-Michael reaction, respectively. Rheological properties of the resulting hydrogels were studied, revealing that both spacer type as well as charge affected elastic moduli and degree of swelling.

Supporting Information

 
  • References

    • 1a Kopeček J, Yang J. Angew. Chem. Int. Ed. 2012; 51: 7396 ; Angew. Chem. 2012, 124, 7512
    • 1b van Vlierberghe S, Dubruel P, Schacht E. Biomacromolecules 2011; 12: 1387
    • 1c Bashur CA, Venkataraman L, Ramamurthi A. Tissue Eng. Part B Rev. 2012; 18: 203
    • 2a Chen YM, Ogawa R, Kakugo A, Osada Y, Gong JP. Soft Matter 2009; 5: 1804
    • 2b Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. Biomaterials 2004; 25: 3023
    • 2c Li H, Lai F. Anal. Bioanal. Chem. 2011; 399: 1233
    • 2d Tan F, Xu X, Deng T, Yin M, Zhang X, Wang J. Biomed. Mater. 2012; 7: 55009
    • 2e Schillemans JP, Hennink WE, van Nostrum CF. Eur. J. Pharm. Biopharm. 2010; 76: 329
    • 2f Smith MH, Lyon LA. Macromolecules 2011; 44: 8154
    • 2g Chen YM, Gong JP, Tanaka M, Yasuda K, Yamamoto S, Shimomura M, Osada Y. J. Biomed. Mater. Res. 2009; 88: 74
  • 3 Amitai G, Murata H, Andersen JD, Koepsel RR, Russell AJ. Biomaterials 2010; 31: 4417
  • 4 Krishnan S, Finlay JA, Hexemer A, Wang N, Ober CK, Kramer EJ, Callow ME, Callow JA, Fischer D. Polym. Prepr. 2005; 46: 1248
  • 5 Hughes G, Bryce MR. J. Mater. Chem. 2005; 15: 94
  • 6 Wang YZ, Epstein AJ. Acc. Chem. Res. 1999; 32: 217
  • 7 Yoshida M. Chem. Record 2010; 10: 230
  • 8 Stavrouli N, Aubry T, Tsitsilianis C. Polymer 2008; 49: 1249
  • 9 Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature 2010; 463: 339
  • 10 Southan A, Mateescu M, Hagel V, Bach M, Schuh C, Kleinhans C, Kluger PJ, Tussetschläger S, Nuss I, Haraszti T, Wegner SV, Spatz JP, Boehm H, Laschat S, Tovar GE. M. Macromol. Chem. Phys. 2013; 214: 1865
  • 11 Hagel V, Mateescu M, Southan A, Wegner SV, Nuss I, Haraszti T, Kleinhans C, Schuh C, Spatz JP, Kluger PJ, Bach M, Tussetschläger S, Tovar GE. M, Laschat S, Boehm H. Nature Sci. Rep. 2013; 3: 2043
  • 12 Hennink W, van Nostrum C. Adv. Drug Deliver. Rev. 2002; 54: 13
  • 13 Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD. Biomaterials 2004; 25: 1339
  • 14 Schultz KM, Baldwin AD, Kiick KL, Furst EM. Macromolecules 2009; 42: 5310
    • 15a Rulev AY. Russ. Chem. Rev. 2011; 80: 197
    • 15b Rizzi SC, Hubbell JA. Biomacromolecules 2005; 6: 1226
  • 16 Hobson LJ, Feast W. Polymer 1999; 40: 1279
  • 17 Kimura S, Ikeda M, Shimizu Y, Matsumoto S, Komatsu H, Tamaru S.-i, Takigawa T, Hamachi I. Macromol. Biosci. 2008; 8: 1019
  • 18 Chuchuryukin AV, Chase PA, Dijkstra HP, Suijkerbuijk BM. J. M, Mills AM, Spek AL, van Klink GP. M, van Koten G. Adv. Synth. Catal. 2005; 347: 447
  • 19 Okawa T, Osakada N, Eguchi S, Kakehi A. Tetrahedron 1997; 53: 16061
  • 20 Cynamon MH, Gimi R, Gyenes F, Sharpe CA, Bergmann KE, Han HJ, Gregor LB, Rapolu R, Luciano G, Welch JT. J. Med. Chem. 1995; 38: 3902
  • 21 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522 ; Angew. Chem. 1978, 90, 556
    • 22a Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV In Handbook of Heterocyclic Chemistry . Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Elsevier; Oxford: 2010: 242-382
    • 22b Wang X.-B, Dacres JE, Yang X, Broadus KM, Lis L, Wang L.-S, Kass SR. J. Am. Chem. Soc. 2003; 125: 296
  • 23 Berg U, Gallo R, Klatte G, Metzger J. J. Chem. Soc., Perkin Trans. 2 1980; 1350
  • 24 Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD. Macromol. Biosci. 2009; 9: 20
    • 25a Ghosh SK, Bharadwaj PK. J. Chem. Sci. 2005; 117: 23
    • 25b Shi Q, Zhang S, Wang Q, Ma H, Yang G, Sun W.-H. J. Mol. Struct. 2007; 837: 185
  • 26 Jeong B, Bae YH, Kim SW. Macromolecules 1999; 32: 7064
  • 27 Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD. Biomacromolecules 2002; 3: 1304
    • 28a Ellman GL. Arch. Biochem. Biophys. 1958; 74: 443
    • 28b Thannhauser TW, Konishi Y, Scheraga HA. Methods Enzymol. 1987; 143: 115