Synthesis 2013; 45(16): 2337-2342
DOI: 10.1055/s-0033-1338488
paper
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Formation of C–Se and C–Te Bonds through Cross Coupling of Aryl Halides with Se(0) and Te(0)/Nano-Fe3O4@GO

Mohammad Zaman Kassaee*
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran   Fax: +98(21)88006544   Email: Kassaeem@Modares.ac.ir
,
Elaheh Motamedi
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran   Fax: +98(21)88006544   Email: Kassaeem@Modares.ac.ir
,
Barahman Movassagh
b   Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
,
Samira Poursadeghi
a   Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran   Fax: +98(21)88006544   Email: Kassaeem@Modares.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 25 December 2012

Accepted after revision: 09 May 2013

Publication Date:
27 June 2013 (online)


Abstract

The formation of C–Se and C–Te bonds is of synthetic and biological importance. Graphene oxide based nano-Fe3O4 (nano­-Fe3O4@GO) is used as a reusable catalyst for the efficient synthesis of diselenides and ditellurides, through cross coupling of Se(0) or Te(0) with aryl iodides. The magnetic heterogeneous catalyst could be easily recovered and reused many times without significant loss of catalytic activity. In addition the superiority of nano-Fe3O4@GO over pristine nano-Fe3O4 is established.

Supporting Information

 
  • References

  • 1 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science (Washington, D.C.) 2004; 306: 666
  • 2 Geim AK, Novoselov KS. Nat. Mater. 2007; 6: 183
  • 3 Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK. Science (Washington, D.C.) 2008; 320: 356
  • 4 Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. Nature (London) 2007; 446: 60
  • 5 Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleason HF, Hill EW, Geim AK, Novoselov KS. Nano Lett. 2008; 8: 1704
  • 6 Si YC, Samulski ET. Chem. Mater. 2008; 20: 6792
  • 7 Xu C, Wang X, Zhu JW. J. Phys. Chem. C 2008; 112: 19841
  • 8 Muszynski R, Seger B, Kamat PV. J. Phys. Chem. C 2008; 112: 5263
  • 9 Luechinger NA, Athanassiou EK, Stark WJ. Nanotechnology 2008; 19: 6
  • 10 Williams G, Seger B, Kamat PV. ACS Nano 2008; 2: 1487
  • 11 Nethravathi C, Viswanath B, Shivakumara C, Mahadevaian N, Rajamathi M. Carbon 2008; 46: 1773
  • 12 Williams G, Kamat PV. Langmuir 2009; 25: 13869
  • 13 Szabo T, Szeri A, Dekany I. Carbon 2005; 43: 87
  • 14 Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J. ACS Nano 2009; 3: 907
  • 15 Xu C, Wang X. Small 2009; 5: 2212
  • 16 Li Y, Gao W, Ci L, Wang C, Ajayan PM. Carbon 2010; 48: 1124
  • 17 Rodeo S, Pinged P, Piazza P, Pelerine V, Bertram F. Nano Lett. 2007; 7: 2707
  • 18 Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara Y. J. Magn. Magn. Mater. 1987; 65: 245
  • 19 Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H. Nature (London) 2008; 455: 515
  • 20 Gupta AK, Gupta M. Biomaterials 2005; 26: 3995
  • 21 Lu AH, Schmidt W, Matoussevitch N, Bönnermann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Angew. Chem. Int. Ed. 2004; 43: 4303
  • 22 Mornet S, Vasseur S, Grasset F, Verveka P, Goglio P, Demourgues A, Portier J, Pollert E, Duguet E. Prog. Solid State Chem. 2006; 34: 237
  • 23 Elliott DW, Zhang WX. Environ. Sci. Technol. 2001; 35: 4922
  • 24 Huang Z, Li J, Chen QW, Wang H. Mater. Chem. Phys. 2009; 114: 33
  • 25 Hojati-Talemi P, Azadmanjiri J, Simon GP. Mater. Lett. 2010; 64: 1684
  • 26 Krief A, Hevesi L. Organoselenium Chemistry I . Springer; Berlin: 1988
  • 27 Wirth T. Organoselenium Chemistry-Modern Developments in Organic Synthesis. Springer Verlag; Heidelberg: 2000
  • 28 Prabhu K, Chandrasekaran S. Chem. Commun. 1997; 1021
  • 29 Krief A, Dumont W, Delmotte C. Angew. Chem. Int. Ed. 2000; 39: 1669
  • 30 Ayrey G, Barnard D, Woodbridge DT. J. Chem. Soc. 1962; 2089
  • 31 Salama P, Bernard C. Tetrahedron Lett. 1995; 36: 5711
  • 32 Taniguchi N. Synlett 2005; 1687
  • 33 Taniguchi N. Tetrahedron 2012; 68: 10510
  • 34 Balkrishna SJ, Bhakuni BS, Kumar S. Tetrahedron 2011; 67: 9565
  • 35 Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
  • 36 Reddy VP, Kokkirala Swapna AV. K, Rao KR. Org. Lett. 2009; 11: 951
  • 37 Singh D, Deobald AM, Camargo LR. S, Tabarelli G, Rodrigues OE. D, Braga AL. Org. Lett. 2010; 12: 3288
  • 38 Sherry BD, Furstner A. Chem. Commun. 2009; 7116
  • 39 Kofink CC, Blank B, Pagano S, Gçtz N, Knochel P. Chem. Commun. 2007; 1954
  • 40 Cahiez G, Gager O, Habiak V. Synthesis 2008; 2636
  • 41 Taher A, Kim JB, Jung JY, Ahn WS, Jin MJ. Synlett 2009; 2477
    • 42a Correa A, Bolm C. Angew. Chem. Int. Ed. 2007; 46: 8862
    • 42b Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 42c Bistri O, Correa A, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 586
  • 43 Kassaee MZ, Motamedi E, Majdi M. Chem. Eng. J. 2011; 172: 540
  • 44 Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Carbon 2006; 44: 3342
  • 45 Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M. J. Bio. Mater. Res. A 2006; 1: 333
  • 46 Rocchiccioli-Deltche C, Franck R, Cabuiland V, Massart R. J. Chem. Res. 1987; 5: 126
  • 47 Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958; 80: 1339