Synthesis 2013; 45(11): 1462-1468
DOI: 10.1055/s-0033-1338477
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Allylic Alkylations as Versatile Tool for Amino Acid and Peptide Modifications

Uli Kazmaier*
Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany   Fax: +49(681)3022409   eMail: u.kazmaier@mx.uni-saarland.de
,
Anton Bayer
Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany   Fax: +49(681)3022409   eMail: u.kazmaier@mx.uni-saarland.de
,
Jan Deska
Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany   Fax: +49(681)3022409   eMail: u.kazmaier@mx.uni-saarland.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 06. April 2013

Accepted: 16. April 2013

Publikationsdatum:
08. Mai 2013 (eFirst)

Abstract

Palladium-catalyzed allylic alkylations are especially suitable for the introduction of γ,δ-unsaturated side chains into amino acids and even peptides. Glycine ester enolates are generally used as nucleophiles in these reactions, they react at a very low temperature (–78 °C) to give the products of isomerization-free allylation. In reactions of cis-configured allylic substrates, the olefin geometry can be transferred to the product. Because the syn position of the corresponding syn/anti π-allyl complex formed in this case is more reactive, this isomerization-free protocol also allows regioselective and stereoselective allylations. Using stannylated allylic substrates gives metalated amino acid derivatives that are ideal substrates for subsequent Stille couplings or tin–iodine exchange reactions. If peptides are deprotonated with excess­ strong base, the corresponding ester or amide enolates formed can also be subjected to allylation; in this case the stereochemical outcome can be controlled by the peptide chain.

 
  • References

  • 1 Kazmaier U, Pohlman M In Metal-Catalyzed C–C and C–N Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 531
    • 2a Grandel R, Kazmaier U, Nuber B. Liebigs Ann. Chem. 1996; 1143
    • 2b Grandel R, Kazmaier U. Tetrahedron Lett. 1997; 38: 409
    • 2c Grandel R, Kazmaier U, Rominger F. J. Org. Chem. 1998; 63: 4524
    • 3a Pohlman M, Kazmaier U. Org. Lett. 2003; 5: 2631
    • 3b Mendler B, Kazmaier U. Org. Lett. 2005; 7: 1715
    • 3c Mendler B, Kazmaier U, Huch V, Veith M. Org. Lett. 2005; 7: 2643
    • 3d Schmidt C, Kazmaier U. Eur. J. Org. Chem. 2008; 887
    • 5a Kazmaier U, Zumpe FL. Angew. Chem. 1999; 111: 1572 ; Angew. Chem. Int. Ed. 1999, 38, 1468
    • 5b Kazmaier U, Zumpe FL. Eur. J. Org. Chem. 2001; 4067
    • 6a Kazmaier U, Schauß D, Pohlman M. Org. Lett. 1999; 1: 1017
    • 6b Kazmaier U, Pohlman M, Schauß D. Eur. J. Org. Chem. 2000; 2761
    • 7a Crisp GT, Glink PT. Tetrahedron Lett. 1992; 33: 4649
    • 7b Crisp GT, Glink PT. Tetrahedron 1994; 50: 3213
    • 7c Kazmaier U, Schauß D, Pohlman M, Raddatz S. Synthesis 2000; 914
    • 7d Kazmaier U, Schauß D, Raddatz S, Pohlman M. Chem. Eur. J. 2001; 7: 456
  • 8 Consiglio G, Waymouth RM. Chem. Rev. 1989; 89: 257
  • 9 Kazmaier U, Zumpe FL. Angew. Chem. 2000; 112: 805 ; Angew. Chem. Int. Ed. 2000, 39, 802
  • 10 Kazmaier U, Pohlman M. Synlett 2004; 623
  • 11 Kazmaier U, Krämer K. J. Org. Chem. 2006; 71: 8950
    • 12a Kazmaier U, Lindner T. Angew. Chem. 2005; 117: 3368 ; Angew. Chem. Int. Ed. 2005, 44, 3303
    • 12b Lindner T, Kazmaier U. Adv. Synth. Catal. 2005; 1687
    • 12c Krämer K, Deska J, Hebach C, Kazmaier U. Org. Biomol. Chem. 2009; 7: 103
    • 12d Gawas D, Kazmaier U. Org. Biomol. Chem. 2010; 8: 457
  • 13 Kazmaier U, Deska J, Watzke A. Angew. Chem. 2006; 118: 4973 ; Angew. Chem. Int. Ed. 2006, 45, 4855
    • 14a Deska J, Kazmaier U. Angew. Chem. 2007; 119: 4654 ; Angew. Chem. Int. Ed. 2007, 46, 4570
    • 14b Deska J, Kazmaier U. Chem. Eur. J. 2007; 13: 6204
  • 15 Datta S, Kazmaier U. Org. Biomol. Chem. 2011; 9: 872
  • 16 Datta S, Bayer A, Kazmaier U. Org. Biomol. Chem. 2012; 10: 8268