Synlett 2013; 24(10): 1269-1274
DOI: 10.1055/s-0033-1338446
letter
© Georg Thieme Verlag Stuttgart · New York

Addition of Terminal Alkynes to Aromatic Nitriles Catalyzed by Divalent Lanthanide Amides Supported by Amidates: Synthesis of Ynones

Hao Ding
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
,
Chengrong Lu
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
,
Xiaolin Hu
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
,
Bei Zhao*
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
,
Bing Wu
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
,
Yingming Yao*
College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)65880305   Email: zhaobei@suda.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 20 February 2013

Accepted after revision: 04 April 2013

Publication Date:
29 April 2013 (online)


Abstract

An efficient protocol has been established for the synthesis of conjugated ynones via addition of terminal alkynes to aromatic nitriles, which is catalyzed by novel divalent lanthanide amide complexes. All the reactions gave the products in good to excellent yields at room temperature under solvent-free conditions without any additives. The novel lanthanide amide catalysts were also synthesized and structurally characterized for the first time.

Supporting Information

Primary Data

 
  • References

    • 1a Moteki SA, Han JW, Arimitsu S, Akakura M, Nakayama K, Maruoka K. Angew. Chem. Int. Ed. 2012; 51: 1187
    • 1b Ramachary DB, Venkaiah C, Krishna PM. Chem. Commun. 2012; 48: 2252
    • 1c Shi S.-L, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2012; 51: 3932
    • 1d Yamamoto A, Ueda A, Brémond P, Tiseni PS, Kishi Y. J. Am. Chem. Soc. 2012; 134: 893
    • 1e Jiang HF, Pan XY, Huang LB, Zhao J, Shi DB. Chem. Commun. 2012; 48: 4698
    • 2a Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2012; 134: 4080
    • 2b McLeod MC, Wilson ZE, Brimble MA. J. Org. Chem. 2012; 77: 400
    • 2c Plażuk D, Zakrzewski J, Nakatani K, Makal A, Woźniak K, Domagała S. RSC Adv. 2012; 2: 3512
    • 2d Tsvetkov NP, Bayir A, Schneider S, Brewer M. Org. Lett. 2012; 14: 264
    • 3a Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 12104
    • 3b Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 11142
    • 3c Wu X.-F, Sundararaju B, Neumann H, Dixneuf PH, Beller M. Chem. Eur. J. 2011; 17: 106
    • 4a Delude L, Masdeu AM, Alper H. Synthesis 1994; 1149
    • 4b Ahmed MS. M, Mori A. Org. Lett. 2003; 5: 3057
    • 4c Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. 2006; 2236
    • 4d Liu JM, Peng XG, Sun W, Zhao YW, Xia CG. Org. Lett. 2008; 10: 3933
    • 4e Wang Y, Liu JH, Xia CG. Tetrahedron Lett. 2011; 52: 1587
  • 5 Park A, Park K, Kim Y, Lee S. Org. Lett. 2011; 13: 944
    • 6a Chen L, Li C.-J. Org. Lett. 2004; 6: 3151
    • 6b Alonso DA, Nájera C, Pacheco MC. J. Org. Chem. 2004; 69: 1615
    • 6c Cox RJ, Ritson DJ, Dane TA, Berge J, Charmant JP. H, Kantacha A. Chem. Commun. 2005; 1037
    • 6d Baxendale IR, Schou SC, Sedelmeier J, Ley SV. Chem. Eur. J. 2010; 16: 89
    • 6e Santra S, Dhara K, Ranjan P, Bera P, Dash J, Mandal SK. Green Chem. 2011; 13: 3238
    • 6f Bakherad M, Keivanloo A, Bahramian B, Jajarmi S. Synlett 2011; 311
  • 7 Gandeepan P, Parthasarathy K, Su T.-H, Cheng C.-H. Adv. Synth. Catal. 2012; 354: 457
  • 8 Shen QS, Huang W, Wang JL, Zhou XG. Organometallics 2008; 27: 301
  • 9 Stanlake LJ. E, Schafer LL. Organometallics 2009; 28: 3990
  • 10 Thomson JA, Schafer LL. Dalton Trans. 2012; 41: 7897
    • 11a Stanlake LJ. E, Beard JD, Schafer LL. Inorg. Chem. 2008; 47: 8062
    • 11b Wang QW, Zhang FR, Song HB, Zi GF. J. Organomet. Chem. 2011; 696: 2186
    • 11c Zhang FR, Zhang JX, Song HB, Zi GF. Inorg. Chem. Commun. 2011; 14: 72
    • 12a Panda TK, Zulys A, Gamer MT, Roesky PW. J. Organomet. Chem. 2005; 690: 5078
    • 12b Takaki K, Komeyama K, Kobayashi D, Kawabata T, Takehira K. J. Alloys Compd. 2006; 408–412: 432
    • 12c Delbridge EE, Dugah DT, Nelson CR, Skelton BW, White AH. Dalton Trans. 2007; 143
    • 12d Zhou H, Guo HD, Yao YM, Zhou LY, Sun HM, Sheng HT, Zhang Y, Shen Q. Inorg. Chem. 2007; 46: 958
    • 12e Datta S, Gamer MT, Roesky PW. Organometallics 2008; 27: 1207
    • 12f Du Z, Li WB, Zhu XH, Xu F, Shen Q. J. Org. Chem. 2008; 73: 8966
    • 12g Dugah DT, Skelton BW, Delbridge EE. Dalton Trans. 2009; 1436
    • 12h Yang S, Du Z, Zhang Y, Shen Q. Chem. Commun. 2012; 48: 9780
    • 12i Garcia J, Allen MJ. Eur. J. Inorg. Chem. 2012; 4550
    • 13a Frantz DE, Fässler R, Tomooka CS, Carreira EM. Acc. Chem. Res. 2000; 33: 373
    • 13b Nishiura M, Hou Z, Wakatsuki Y, Yamaki T, Miyamoto T. J. Am. Chem. Soc. 2003; 125: 1184
    • 13c Wei C, Mague JT, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5749
    • 13d Nishiura M, Hou Z. J. Mol. Catal. A: Chem. 2004; 213: 101
    • 13e Zhang W.-X, Nishiura M, Hou Z. J. Am. Chem. Soc. 2005; 127: 16788
    • 13f Zhang W.-X, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008; 47: 9700
    • 13g Wang Z, Wang Y, Zhang W.-X, Hou Z, Xi Z. J. Am. Chem. Soc. 2009; 131: 15108
    • 13h Wang Y, Zhang W.-X, Wang Z, Xi Z. Angew. Chem. Int. Ed. 2011; 50: 8122