Klin Monbl Augenheilkd 2013; 230(6): 570-574
DOI: 10.1055/s-0032-1328639
Experimentelle Studie
Georg Thieme Verlag KG Stuttgart · New York

CD34 und Alpha-smooth-Muscle-Actin-Keratozyten-Expression nach photodynamischer Inaktivierung (PDI)

CD34 and Alpha-Smooth Muscle Actin Expression of Keratocytes Following Photodynamic Inactivation (PDI)
N. Szentmáry
Augenklinik, Universität des Saarlandes, Homburg/Saar
,
J. Wang
Augenklinik, Universität des Saarlandes, Homburg/Saar
,
T. Stachon
Augenklinik, Universität des Saarlandes, Homburg/Saar
,
S. Goebels
Augenklinik, Universität des Saarlandes, Homburg/Saar
,
B. Seitz
Augenklinik, Universität des Saarlandes, Homburg/Saar
› Author Affiliations
Further Information

Publication History

eingereicht 31 January 2013

akzeptiert 30 April 2013

Publication Date:
21 June 2013 (online)

Zusammenfassung

Ziele: Die photodynamische Inaktivierung (PDI) kann als mögliche Behandlungsalternative einer therapieresistenten infektiösen Keratitis in Betracht gezogen werden. PDI kann Mikroorganismen einer infizierten Hornhaut zum einen durch freie Sauerstoffradikale schädigen, zum anderen die Aktivierung von Keratozyten und immunkompetenten Zellen unterstützen. Ziel dieser Studie war die Bestimmung der Auswirkungen von PDI auf die Aktivierung von humanen Keratozyten in der Zellkultur.

Methoden: Primäre humane Keratozyten wurden durch enzymatische Behandlung mit Kollagenase A (1 mg/ml) aus humanen Korneoskleralscheiben isoliert und in DMEM/Hamʼs Kulturmedium, versetzt mit 10 % fetalem Kälberserum kultiviert. Die Keratozyten wurden mit dem Photosensibilizator Chlorin e6 (Ce6) in den Konzentrationen von 0, 50, 150 und 250 nM für 30 Minuten inkubiert und anschließend mit einer Wellenlänge von 670 nm für 13 Minuten bestrahlt. Einen Tag nach der Behandlung wurde die Expression von CD34 und Alpha-smooth Muscle Actin mittels Durchflusszytometrie (FACS) bestimmt.

Ergebnisse: Die ausschließliche Anwendung von Ce6 oder Bestrahlung veränderte die Expression von CD34 und α-smooth-muscle-actin der Zellen nicht signifikant. Vierundzwanzig Stunden nach PDI mit 50–250 nM Ce6 blieb die CD34-Expression unverändert, während der Prozentsatz von Alpha-smooth-Muscle-Actin-positiven Keratozyten bei 250 nMol Ce6 signifikant sank (p = 0.01).

Schlussfolgerung: Die Ergebnisse unser Studie legen nahe, dass PDI in vitro als Kurzzeiteffekt die myofibroblastische Transformation der Keratozyten hemmt, jedoch keine Aktivierung der CD34-positiven kornealen Zellen bewirkt. Auf diese Weise könnte möglicherweise durch PDI die antimikrobielle Abwehr heruntergeregelt werden.

Abstract

Purpose: Photodynamic inactivation (PDI) may be a potential treatment alternative in therapy-resistant infectious keratitis. PDI may eliminate the microorganisms from the infected cornea by damage caused through free oxygen radicals, or even by supporting different stages of activation of keratocytes and inflammatory cell response. The purpose of this study was to determine the impact of PDI on activation of human keratocytes in culture.

Methods: Primary human keratocytes were isolated by digestion in collagenase A (1 mg/mL) from human corneal buttons, and cultured in DMEM/Hamʼs culture medium supplemented with 10 % foetal calf serum. Keratocytes underwent illumination (670 nm) for 13 minutes following exposure to 0, 50, 150 and 250 nMol/ml concentrations of the photosensitizer chlorin e6 (Ce6) in the culture medium. Twenty-four hours after treatment CD34 and α-smooth-muscle actin expression of the cells was analysed using flow-cytometry (FACS).

Results: Using Ce6 or illumination only, α-smooth-muscle actin expression of the cells did not change significantly. Twenty-four hours after PDI the percentage of CD34-positive keratocytes did not change significantly using 50–250 nM Ce6, however, the percentage of α-smooth-muscle actin-positive keratocytes decreased significantly at 250 nM Ce6 (p = 0.01).

Conclusions: As a short-term effect, PDI seems to inhibit myofibroblastic transformation of keratocytes, but does not have an impact on activation of CD34-positive keratocytes.

With this impact PDI possibly may reduce the antimicrobial defence of keratocytes.

 
  • Literatur

  • 1 Szentmáry N, Goebels S, Bischoff M et al. Photodynamische Therapie bei infektiöser Keratitis. Ophthalmologe 2012; 109: 165-170
  • 2 Lang GE. Die photodynamische Therapie in der Augenheilkunde. Heidelberg: Springer Verlag; 2008
  • 3 Cursiefen C. Corneal crosslinking: „Safe and effective?“. Ophthalmologe 2009; 106: 164-165
  • 4 Micelli Ferrari T, Leozappa M, Lorusso M et al. Eschericia coli keratitis treated with ultraviolet A/riboflavin corneal crosslinking: a case report. Eur J Ophthalmol 2009; 19: 295-297
  • 5 Al-Sabai N, Koppen C, Tassignon MJ. UVA/riboflavin crosslinking as treatment for corneal melting. Bull Soc Belg Ophthalmol 2010; 315: 13-17
  • 6 Morén H, Malmsjö M, Mortensen J et al. Riboflavin and ultraviolet a collagen crosslinking of the cornea for the treatment of keratitis. Cornea 2010; 29: 102-104
  • 7 Makdoumi K, Mortensen J, Crafoord S. Infectious keratitis treated with corneal crosslinking. Cornea 2010; 29: 1353-1358
  • 8 Makdoumi K, Mortensen J, Sorkhabi O et al. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol 2012; 250: 95-102
  • 9 Anwar HM, El-Danasoury AM, Hashem AN. Corneal collagen crosslinking in the treatment of infectious keratitis. Clin Ophthalmol 2011; 5: 1277-1280
  • 10 Khan YA, Kashiwabuchi RT, Martins SA et al. Riboflavin and ultraviolet light a therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis: report of 3 cases. Ophthalmology 2011; 118: 324-331
  • 11 Kymionis GD, Portaliou DM, Bouzoukis DI et al. Herpetic keratitis with iritis after corneal crosslinking with riboflavin and ultraviolet A for keratoconus. J Cataract Refract Surg 2007; 33: 1982-1984
  • 12 Kymionis GD, Bouzoukis DI, Diakonis VF et al. Diffuse lamellar keratitis after corneal crosslinking in a patient with post-laser in situ keratomileusis corneal ectasia. J Cataract Refract Surg 2007; 33: 2135-2137
  • 13 Rama P, Di Matteo F, Matuska S et al. Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg 2009; 35: 788-791
  • 14 Dougherty TJ, Gomer CJ, Henderson BW et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90: 889-905
  • 15 von Felbert V, Hoffmann G, Hoff-Lesch S et al. Photodynamic therapy of multiple actinic keratoses: Reduced pain through use of visible light plus water-filtered infrared-A (wIRA) compared to light from light-emitting diodes. Br J Dermatol 2010; 163: 607-615
  • 16 Fuchs SM, Fluhr JW, Bankova L et al. Photodynamic therapy (PDT) and waterfiltered infrared A (wIRA) in patients with recalcitrant common hand and foot warts. Ger Med Sci 2004; 2: Doc08
  • 17 Ebihara N, Yamagami S, Chen L et al. Expression and function of toll-like receptor-3 and -9 in human corneal myofibroblasts. Invest Ophthalmol Vis Sci 2007; 48: 3069-3076
  • 18 Brissette-Storkus CS, Reynolds SM, Lepisto AJ et al. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci 2002; 43: 2264-2271
  • 19 Seitz B, Hayashi S, Wee WR et al. In vitro effects of aminoglycosides and fluoroquinolones on keratocytes. Invest Ophthalmol Vis Sci 1996; 37: 656-665
  • 20 Joseph A, Hossain P, Jham S et al. Expression of CD34 and L-Selectin on human corneal keratocytes. Invest Ophthalmol Vis Sci 2003; 44: 4689-4692
  • 21 Sosnová M, Bradl M, Forrester JV. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells 2005; 23: 507-515
  • 22 Hamrah P, Huq SO, Liu Y et al. Corneal immunity is mediated by heterogenous population of antigen-presenting cells. J Leukoc Biol 2003; 74: 172-178
  • 23 Liu Y, Hamrah P, Zhang Q et al. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med 2002; 195: 259-268
  • 24 Dua HS. Epithelial mesenchymal transition in the cornea III. EuCornea Congress, Milan, Italy. 2012
  • 25 Toti P, Tosi GM, Traversi C et al. CD-34 stromal expression pattern in normal and altered human corneas. Ophthalmology 2002; 109: 1167-1171
  • 26 Majdic O, Stockl J, Pickl WF et al. Signaling and induction of enhanced cytoadhesiveness via the hemopoietic progenitor cell surface molecule CD34. Blood 1994; 83: 1226-1234
  • 27 Nakamura Y, Komano H, Nakauchi H. Two alternative forms of cDNA encoding CD34. Exp Hematol 1993; 21: 236-242
  • 28 Hu MC, Chien SL. The cytoplasmic domain of stem cell antigen CD34 is essential for cytoadhesion signaling but not sufficient for proliferation signaling. Blood 1998; 91: 1152-1162
  • 29 Wilson SE. Corneal myfibroblast biology and pathobiology: Generation, persistence, and transparency. Exp Eye Res 2012; 99: 78-88
  • 30 Garana RM, Petroll WM, Chen WT et al. Radial keratotomy. II. Role of the myofibroblast in corneal wound contraction. Invest Ophthalmol Vis Sci 1992; 33: 3271-3282
  • 31 Jester JV, Petroll WM, Barry PA et al. Expression of alpha-smooth muscle (alpha-SM) actin during corneal stromal wound healing. Invest Ophthalmol Vis Sci 1995; 36: 809-819
  • 32 Huang X, Barrett RP, McClellan SA et al. Silencing Toll-like receptor-9 in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2005; 46: 4209-4216
  • 33 Espana EM, Kawakita T, Liu CY et al. CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Invest Ophthalmol Vis Sci 2004; 45: 2985-2991