Aktuelle Neurologie 2012; 39(09): 463-466
DOI: 10.1055/s-0032-1327320
Neues in der Neurologie
© Georg Thieme Verlag KG Stuttgart · New York

Neues bei paroxysmalen Bewegungsstörungen

What’s New in Paroxysmal Movement Disorders
S. Zittel
Klinik für Neurologie, Universitätsklinik Hamburg-Eppendorf
,
A. Münchau
Klinik für Neurologie, Universitätsklinik Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

Publication Date:
10 December 2012 (online)

Zusammenfassung

Paroxysmale Bewegungsstörungen sind seltene Erkrankungen, die jedoch teilweise exzellent behandelbar sind und daher differenzialdiagnostisch bei der Evaluation von Patienten mit paroxysmalen Störungen eine wichtige Rolle spielen. Die autosomal-dominant vererbten paroxysmalen Dyskinesien und hierunter die paroxysmale kinesiogene Dyskinesie sind die häufigste Form der paroxysmalen Bewegungsstörung. Der folgende Artikel gibt eine Übersicht über die klinische Präsentation der klassischen paroxysmalen Dyskinesien und ist fokussiert auf neue Erkenntnisse, insbesondere zu den genetischen Ursachen paroxysmaler Störungen und der zugrundeliegenden Pathophysiologie. Es werden zudem unterschiedliche klinische Phänotypen durch spezifische Genmutationen beschrieben, die verdeutlichen, dass enge Verbindungen zwischen paroxysmalen Dyskinesien und anderen paroxysmalen Störungen vorliegen.

Abstract

Paroxysmal movement disorders are rare neurological disorders. Since some of these disorders have an excellent response to medical treatment it is important to consider them in the differential diagnosis of paroxysmal disorders. Autosomal dominantly inherited paroxysmal dyskinesias, in particular paroxysmal kinesigenic dyskinesia, represent the most common type of paroxysmal movement disorder. This article gives an overview of the clinical characteristics of paroxysmal dyskinesias and summarises new insights into the genetics and pathophysiology of these disorders. We describe the phenotypic variability of specific gene mutations to highlight the close link between paroxysmal dyskinesias and others paroxysmal disorders.

 
  • Literatur

  • 1 Kato N, Sadamatsu M, Kikuchi T et al. Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res 2006; 70 (Suppl. 01) 174-S184
  • 2 Bruno MK, Hallett M, Gwinn-Hardy K et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 2004; 63: 2280-2287
  • 3 Szepetowski P, Rochette J, Berquin P et al. Familial infantile convulsions and paroxysmal choreoathetosis: a new neurological syndrome linked to the pericentromeric region of human chromosome 16. Am J Hum Genet 1997; 61: 889-898
  • 4 Tomita H, Nagamitsu S, Wakui K et al. Paroxysmal kinesigenic choreoathetosis locus maps to chromosome 16p11.2-q12.1. Am J Hum Genet 1999; 65: 1688-1697
  • 5 Bennett LB, Roach ES, Bowcock AM. A locus for paroxysmal kinesigenic dyskinesia maps to human chromosome 16. Neurology 2000; 54: 125-130
  • 6 Caraballo R, Pavek S, Lemainque A et al. Linkage of benign familial infantile convulsions to chromosome 16p12-q12 suggests allelism to the infantile convulsions and choreoathetosis syndrome. Am J Hum Genet 2001; 68: 788-794
  • 7 Guerrini R, Bonanni P, Nardocci N et al. Autosomal recessive rolandic epilepsy with paroxysmal exercise-induced dystonia and writer's cramp: delineation of the syndrome and gene mapping to chromosome 16p12-11.2. Ann Neurol 1999; 45: 344-352
  • 8 Valente EM, Spacey SD, Wali GM et al. A second paroxysmal kinesigenic choreoathetosis locus (EKD2) mapping on 16q13-q22.1 indicates a family of genes which give rise to paroxysmal disorders on human chromosome 16. Brain 2000; 123 (10) 2040-2045
  • 9 Spacey SD, Valente EM, Wali GM et al. Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia: evidence for a third EKD gene. Mov Disord 2002; 17: 717-725
  • 10 Chen WJ, Lin Y, Xiong ZQ et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011; 43: 1252-1255
  • 11 Lee YC, Lee MJ, Yu HY et al. PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort. PLoS One 2012; 7: e38543
  • 12 Lee HY, Huang Y, Bruneau N et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012; 1: 2-12
  • 13 Meneret A, Grabli D, Depienne C et al. PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 2012; 79: 170-174
  • 14 Schmidt A, Kumar KR, Redyk K et al. Two faces of the same coin: benign familial infantile seizures and paroxysmal kinesigenic dyskinesia caused by PRRT2 mutations. Arch Neurol 2012; 69: 668-670
  • 15 Liu Q, Qi Z, Wan XH et al. Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet 2012; 49: 79-82
  • 16 Li J, Zhu X, Wang X et al. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. J Med Genet 2012; 49: 76-78
  • 17 van Vliet R, Breedveld G, de Rijk-van Andel J et al. PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology 2012; 79: 777-784
  • 18 Wang JL, Cao L, Li XH et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011; 134: 3493-3501
  • 19 Heron SE, Grinton BE, Kivity S et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012; 90: 152-160
  • 20 Ono S, Yoshiura K, Kinoshita A et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012; 57: 338-341
  • 21 Schubert J, Paravidino R, Becker F et al. PRRT2 Mutations are the major cause of benign familial infantile seizures. Hum Mutat 2012; 33: 1439-1443
  • 22 Dale RC, Gardiner A, Antony J et al. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol 2012; 54: 958-960
  • 23 Graham ME, Washbourne P, Wilson MC et al. Molecular analysis of SNAP-25 function in exocytosis. Ann N Y Acad Sci 2002; 971: 210-221
  • 24 Hu K, Carroll J, Rickman C et al. Action of complexin on SNARE complex. J Biol Chem 2002; 277: 41652-41656
  • 25 Jarman PR, Bhatia KP, Davie C et al. Paroxysmal dystonic choreoathetosis: clinical features and investigation of pathophysiology in a large family. Mov Disord 2000; 15: 648-657
  • 26 Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 1995; 38: 571-579
  • 27 Chudnow RS, Mimbela RA, Owen DB et al. Gabapentin for familial paroxysmal dystonic choreoathetosis. Neurology 1997; 49: 1441-1442
  • 28 Fink JK, Hedera P, Mathay JG et al. Paroxysmal dystonic choreoathetosis linked to chromosome 2q: clinical analysis and proposed pathophysiology. Neurology 1997; 49: 177-183
  • 29 Reitter B, Weisser J. [Familial paroxysmal choreoathetosis. Clinical course, L-dopa-effect (author's transl)]. Monatsschr Kinderheilkd 1978; 126: 405-407
  • 30 Kaufman CB, Mink JW, Schwalb JM. Bilateral deep brain stimulation for treatment of medically refractory paroxysmal nonkinesigenic dyskinesia. J Neurosurg 2010; 112: 847-850
  • 31 Rainier S, Thomas D, Tokarz D et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 2004; 61: 1025-1029
  • 32 Lee HY, Xu Y, Huang Y et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet 2004; 13: 3161-3170
  • 33 Spacey SD, Adams PJ, Lam PC et al. Genetic heterogeneity in paroxysmal nonkinesigenic dyskinesia. Neurology 2006; 66: 1588-1590
  • 34 Bohnen NI, Albin RL, Frey KA et al. (+)-alpha-[11C]Dihydrotetrabenazine PET imaging in familial paroxysmal dystonic choreoathetosis. Neurology 1999; 52: 1067-1069
  • 35 Lombroso CT, Fischman A. Paroxysmal non-kinesigenic dyskinesia: pathophysiological investigations. Epileptic Disord 1999; 1: 187-193
  • 36 Suls A, Dedeken P, Goffin K et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008; 131: 1831-1844
  • 37 Munchau A, Valente EM, Shahidi GA et al. A new family with paroxysmal exercise induced dystonia and migraine: a clinical and genetic study. J Neurol Neurosurg Psychiatry 2000; 68: 609-614
  • 38 Weber YG, Storch A, Wuttke TV et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008; 118: 2157-2168
  • 39 Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 2009; 31: 545-552
  • 40 Striano P, Weber YG, Toliat MR et al. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 2012; 78: 557-562
  • 41 Weber YG, Kamm C, Suls A et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology 2011; 77: 959-964