Synlett 2013; 24(2): 211-214
DOI: 10.1055/s-0032-1317960
letter
© Georg Thieme Verlag Stuttgart · New York

Formation of C–O Bond via Cross-Dehydrogenative Coupling between Isochroman and Oxime under Metal-Free Oxidation Conditions

Hua-Feng He
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
,
Kai Wang
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
,
Bo Xing
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
,
Guorong Sheng
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
,
Tingxuan Ma
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
,
Weiliang Bao*
Department of Chemistry, Xi Xi Campus, Zhejiang University, Hangzhou, Zhejiang 310028, P. R. of China   Fax: +86(571)88273814   Email: wlbao@css.zju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 14 October 2012

Accepted after revision: 09 December 2012

Publication Date:
03 January 2013 (online)


Abstract

DDQ-mediated C–O bond formation through cross-dehydrogenative coupling (CDC) reaction without any metal catalyst under mild conditions was developed. Series of isochromans and oximes could be employed as substrates, and the products were ­obtained in good yields.

Supporting Information

 
  • Reference and Notes

    • 1a Benaskar F, Engels V, Rebrov EV, Patil NG, Meuldijk J, Thune PC, Magusin PC. M. M, Mezari B, Hessel V, Hulshof LA, Hensen EJ. M, Wheatley AE. H, Schouten JC. Chem. Eur. J. 2012; 18: 1800
    • 1b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2008; 47: 3096
    • 1c Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 1d Naidu AB, Jaseer EA, Sekar G. J. Org. Chem. 2009; 74: 3675
    • 1e Naidu AB, Sekar G. Synthesis 2010; 579
    • 1f Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Alikarami M. Synlett 2005; 1101
    • 2a Takaishi K, Kawamoto M, Muranaka A, Uchiyama M. Org. Lett. 2012; 14: 3252
    • 2b Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
    • 2c Peng Y, Song G. Green Chem. 2002; 4: 349

      For recent reviews of transition-metal-catalyzed C–H activation, see:
    • 3a Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 3b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 3c Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 3d Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
  • 4 Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
    • 5a Maheswari CU, Kumar GS, Venkateshwar M, Kumar RA, Kantam ML, Reddy KR. Adv. Synth. Catal. 2010; 352: 341
    • 5b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 5c Liu Q, Li Y.-N, Zhang H.-H, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2012; 18: 620
    • 5d Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
    • 5e Liu P, Wang Z, Lin J, Hu X. Eur. J. Org. Chem. 2012; 1583
    • 5f Li Z, Li C.-J. Eur. J. Org. Chem. 2005; 3173
    • 5g Zhang J, Tiwari B, Xing C, Chen X, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 3649
    • 5h Ghobrial M, Harhammer K, Mihovilovic MD, Schnurch M. Chem. Commun. 2010; 46: 8836
    • 5i Chen L, Shi E, Liu Z, Chen S, Wei W, Li H, Xu K, Wan X. Chem. Eur. J. 2011; 17: 4085
    • 5j Li C.-J, Li Z. Pure Appl. Chem. 2006; 78: 935
    • 5k Basle O, Borduas N, Dubois P, Chapuzet JM, Chan T.-H, Lessard J, Li C.-J. Chem. Eur. J. 2010; 16: 8162
    • 5l Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 5m Xie J, Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 5n Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
    • 5o Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 5p Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077
    • 5q Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 47: 11787
    • 5r Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 5s Alagiri K, Prabhu KR. Org. Biomol. Chem. 2012; 10: 835
    • 5t Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 5u Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
    • 5v Zeng T, Song G, Moores A, Li C.-J. Synlett 2010; 2002
    • 6a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 6b Samanta R, Antonchick AP. Synlett 2012; 23: 809
    • 6c Fokin AA, Schreiner PR. Adv. Synth. Catal. 2003; 345: 1035
    • 6d Hilt G. Angew. Chem. Int. Ed. 2002; 41: 3587
    • 6e Ochiai M, Miyamoto K, Hayashi S, Nakanishi W. Chem. Commun. 2010; 46: 511
    • 6f Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 7a Jin J, Li Y, Wang Z.-J, Qian W.-X, Bao W.-L. Eur. J. Org. Chem. 2010; 1235
    • 7b Wang Z, Mo H, Cheng D, Bao W. Org. Biomol. Chem. 2012; 10: 4249
    • 8a Zhang Y, Li C.-J. Angew. Chem. Int. Ed. 2006; 45: 1949
    • 8b Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 9a Yoo W.-J, Correia CA, Zhang Y, Li C.-J. Synlett 2009; 138
    • 9b Liu X, Zhang Y, Wang L, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2008; 73: 6207
    • 9c Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 9d Richter H, Mancheno OG. Eur. J. Org. Chem. 2010; 4460
    • 9e Tomooka K, Wang L.-F, Okazaki F, Nakai T. Tetrahedron Lett. 2000; 41: 6121
    • 10a Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 10b Ying B.-P, Trogden BG, Liang DT, Xu YC. Org. Lett. 2004; 6: 1523
    • 10c Montevecchi PC, Navacchia ML. J. Org. Chem. 1998; 63: 8035
    • 10d Snider BB. Chem. Rev. 1996; 96: 339
    • 10e Fu PP, Harvey RG. Chem. Rev. 1978; 78: 317
  • 11 Typical Analytical Data of the Products Compound 3a: colorless oil; yield 85%. IR (neat): ν = 2939, 1740, 1492, 1316, 1208, 1096, 928, 748 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.15 (s, 1 H), 7.58 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 3 H), 7.31–7.25 (m, 2 H), 7.17 (d, J = 8.0 Hz, 1 H), 6.36 (s, 1 H), 4.18 (td, J 1 = 11.8 Hz, J 2 = 3.2 Hz, 1 H), 4.03–3.98 (m, 1 H), 3.12–3.03 (m, 1 H), 2.65 (dd, J 1 = 16.4 Hz, J 2 = 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 150.64, 134.82, 131.81, 131.74, 130.09, 128.58, 128.48, 127.87, 127.35, 126.34, 99.10, 58.36, 27.75. HRMS (EI): m/z [M]+ calcd for C16H15NO2: 253.1103; found: 253.1105. Compound 3i: blue oil; yield 77%. IR (neat): ν = 2935, 1711, 1493, 1274, 1095, 984, 922, 746 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.74–7.72 (m, 2 H), 7.37–7.35 (m, 4 H), 7.30–7.23 (m, 2 H), 7.17 (d, J = 8.0 Hz, 1 H), 6.40 (s, 1 H), 4.18 (td, J 1 = 11.7 Hz, J 2 = 3.5 Hz, 1 H), 4.02–3.98 (m, 1 H), 3.11–3.03 (m, 1 H), 2.65 (d, J = 16.0 Hz, 1 H), 2.25 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.48, 136.22, 134.86, 132.23, 129.21, 128.36, 128.25, 128.03, 126.27, 126.18, 98.98, 58.43, 27.85, 13.20. HRMS (EI): m/z [M]+ calcd for C17H17NO2: 267.1259; found: 267.1257. Compound 3p: yellow solid; yield 44%. IR (neat): ν = 2971, 1700, 1590, 1486, 1244, 1005, 918, 750 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (s, 1 H), 7.88 (t, J = 6.8 Hz, 2 H), 7.55–7.41 (m, 7 H), 7.28 (t, J = 8.0 Hz, 1 H), 7.14–7.11 (m, 2 H), 6.84 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 150.41, 150.13, 132.36, 131.87, 130.90, 130.45, 130.10, 129.53, 129.22, 128.76, 127.88, 127.45, 127.15, 124.52, 122.82, 122.40, 121.89, 120.94, 118.31, 99.80. HRMS (EI): m/z [M]+ calcd for C20H14BrNO2: 379.0208; found: 379.0206.