Synthesis 2013; 45(2): 260-264
DOI: 10.1055/s-0032-1317947
paper
© Georg Thieme Verlag Stuttgart · New York

Mononuclear Heterocyclic Rearrangement of 5-Arylisoxazole-3-hydroxamic Acids into 3,4-Substituted 1,2,5-Oxadiazoles

Vladimir I. Potkin*
a  Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 13, Minsk 220072, Belarus   Fax: +375(17)2841679   Email: potkin@ifoch.bas-net.by
,
Sergey K. Petkevich
a  Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 13, Minsk 220072, Belarus   Fax: +375(17)2841679   Email: potkin@ifoch.bas-net.by
,
Alexander S. Lyakhov
b  Research Institute for Physical Chemical Problems of Belarusian State University, Leningradskaya Str., 14, Minsk 220030, Belarus
,
Ludmila S. Ivashkevich
b  Research Institute for Physical Chemical Problems of Belarusian State University, Leningradskaya Str., 14, Minsk 220030, Belarus
› Author Affiliations
Further Information

Publication History

Received: 15 October 2012

Accepted after revision: 05 December 2012

Publication Date:
18 December 2012 (online)


Abstract

By a series of successive transformations, 5-arylisoxazole-3-carboxylic acids (aryl = phenyl, p-tolyl, 2,5-dimethylphenyl) have been converted into 5-arylisoxazole-3-hydroxamic acids, which undergo rearrangement by the action of aqueous KOH to form 3,4-substituted 1,2,5-oxadiazoles. The structure of one of them, 1-(2,5-dimethylphenyl)-2-(4-hydroxy-1,2,5-oxadiazol-3-yl)ethanone, has been confirmed by single crystal X-ray analysis.

Supporting Information

 
  • References

    • 1a Modern Heterocyclic Chemistry . Alvarez-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011
    • 1b Cerecetto H, Porcal W. Mini-Rev. Med. Chem. 2005; 5: 57
    • 1c Takabatake T, Hasewaga M, Nagano T, Hirobe M. Chem. Pharm. Bull. 1992; 40: 1644
    • 2a Agrawal JP, Hodgson RD. Organic Chemistry of Explosives . Wiley; Chichester: 2007
    • 2b Wang R, Guo YQ, Zeng Z, Twamley B, Shreeve JM. Chem. Eur. J. 2009; 15: 2625
    • 2c Veauthier JM, Chavez DE, Tappan BC, Parrish DA. J. Energ. Mater. 2010; 28: 229
  • 3 Sheremetev AB. Russ. Chem. Rev. 1999; 68: 137
  • 4 Ruccia M, Vivona N, Spinelli D. Adv. Heterocycl. Chem. 1981; 29: 141
    • 5a Kakkar R, Grover R, Chadha P. Org. Biomol. Chem. 2003; 1: 2200
    • 5b Surova TV, Enyashin AN. J. Struct. Chem. 2003; 44: 297
    • 5c Ventura ON, Rama JB, Turi L, Dannenberg GG. J. Phys. Chem. 1995; 99: 131
    • 6a Potkin VI, Bumagin NA, Petkevich SK, Lyakhov AS, Rudakov DA, Livantsov MV, Golantsov NE. Synthesis 2012; 44: 151
    • 6b Kulchitsky VA, Potkin VI, Zubenko YuS, Chernov AN, Talabaev MV, Demidchik YuE, Petkevich SK, Kazbanov VV, Gurinovich TA, Roeva MO, Grigoriev DG, Kletskov AV, Kalunov VN. Med. Chem. 2012; 8: 22
    • 6c Potkin VI, Petkevich SK, Zalesskaya EG. Russ. J. Org. Chem. 2009; 45: 879
  • 8 Allen FH. Acta Crystallogr., Sect B 2002; 58: 380
  • 9 CCDC 903835 contains the supplementary crystallographic data for 18. These data can be obtained via http://www.ccdc.cam.ac.uk/conts/retrieving.html, free of charge or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail: deposit@ccdc.cam.ac.uk or fax: +44(1223)336033.
  • 10 Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R. J. Appl. Crystallogr. 2005; 38: 381
  • 11 Sheldrick GM. Acta Crystallogr., Sect A 2008; 64: 112
  • 12 Spek AL. Acta Crystallogr., Sect. D. 2009; 65: 148