Synlett 2013; 24(1): 79-84
DOI: 10.1055/s-0032-1317923
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3,4-Disubsituted Isoxazoles via Enamine [3+2] Cycloaddition

Qian-fa Jia
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
,
Pooi Ming Shurn Benjamin
b   Department of Chemistry, National University of Singapore, Block S15, Level 5, 3 Science Drive 3, 117543, Singapore   Fax: +65(677)91691   Email: chmwangj@nus.edu.sg
,
Jiayao Huang
b   Department of Chemistry, National University of Singapore, Block S15, Level 5, 3 Science Drive 3, 117543, Singapore   Fax: +65(677)91691   Email: chmwangj@nus.edu.sg
,
Zhiyun Du*
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
,
Xi Zheng
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
,
Kun Zhang
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
,
Allan H. Conney
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
,
Jian Wang*
a   Allan H. Conney Laboratory for Anticancer Research, Guang Dong University of Technology, Guang Dong, 510006, P. R. of China
b   Department of Chemistry, National University of Singapore, Block S15, Level 5, 3 Science Drive 3, 117543, Singapore   Fax: +65(677)91691   Email: chmwangj@nus.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 05 November 2012

Accepted after revision: 23 November 2012

Publication Date:
10 December 2012 (online)


Abstract

Enamine-triggered [3+2]-cycloaddition reactions of ­aldehydes and N-hydroximidoyl chlorides in the presence of tri­ethylamine give rise to 3,4-disubstituted isoxazoles upon oxidation of the cycloadduct 3,4,5-trisubstituted 5-(pyrrolidinyl)-4,5-dihydroisoxazoles. This offers a high yielding, regiospecific and metal-free synthetic route for the synthesis of 3,4-disubstituted isoxazoles.

 
  • References and Notes

  • 1 Claisen L, Lowman O. Ber. Dtsch. Chem. Ges. 1888; 21: 1149
  • 2 Quilico A, Stagno D’Alcontres G, Grunarger P. Nature 1950; 166: 226

    • For reviews on drug developments and natural product synthesis involving isoxazoles, see:
    • 3a Kotyatkina AI, Zhabinsky VN, Khripach VA. Russ. Chem. Rev. 2007; 70: 641
    • 3b Behrens F, Koehm M, Burkhardt H. Current Opinion in Rheumatology 2011; 23: 282
    • 3c Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Bottger EC, Zbinden R, Bloemberg GV. J. Clin. Microbiol. 2011; 49: 2924
    • 3d Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung K.-MJ, Collins I, Davies NG. M, Drysdale MJ, Dymock B, Eccles SA, Finch H, Fink A, Hayes A, Howes R, Hubbard RE, James K, Jordan AM, Lockie A, Martins V, Massey A, Matthews TP, McDonald E, Northfield CJ, Pearl LH, Prodromou C, Ray S, Raynaud FI, Roughley SD, Sharp SY, Surgenor A, Walmsley DL, Webb P, Wood M, Workman P, Wright L. J. Med. Chem. 2008; 51: 196
    • 3e Chiarino D, Grancini G, Frigeni V, Biasini I, Carenzi A. J. Med. Chem. 1991; 34: 600
    • 3f Yamamoto T, Fujita K, Asari S, Chiba A, Kataba Y, Ohsumi K, Ohmuta N, Iida Y, Ijichi C, Iwayama S, Fukuchi N, Shoji M. Bioorg. Med. Chem. Lett. 2007; 17: 3736

      For reviews on isoxazole chemistry and its role in synthetic chemistry, see:
    • 4a Cicchi S, Cordero FM, Giomi D. Five-Membered Ring Systems with O and N Atoms . In Progress in Heterocyclic Chemistry . 1st ed., Vol. 23. Elsevier; Amsterdam: 2011: 303-327
    • 4b Altuğ C, Dürüst Y, Elliott MC. Tetrahedron Lett. 2009; 50: 7392
    • 4c Wakefield BI, Wright DJ. Adv. Heterocycl. Chem. . 1979; 25: 147
    • 4d Melo TM. V. D. P. E. Curr. Org. Chem. 2005; 9: 925

      For selected examples of 3,5-disubstituted isoxazole synthesis, see:
    • 5a Vieira AA, Bryk FR, Conte G, Bortoluzzi AJ, Gallardo H. Tetrahedron Lett. 2009; 50: 905
    • 5b Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 5c Chen S, Ren J, Wang Z. Tetrahedron 2009; 65: 9146
    • 5d Mabrour M, Bougrin K, Benhida R, Loupy A, Soufiaoui M. Tetrahedron Lett. 2007; 48: 443
    • 5e Xu J, Hamme AII. Synlett 2008; 919
    • 5f Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
    • 5g Willy B, Rominger F, Müller TJ. J. Synthesis 2008; 293
  • 6 Kim HJ, Lee JH, Olmstead MM, Kurth MJ. J. Org. Chem. 1992; 57: 6513
    • 7a Grecian S, Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
    • 7b Dissanayake AA, Odom AL. Tetrahedron 2012; 68: 807
  • 8 Schmitt DC, Lam L, Johnson JS. Org. Lett. 2011; 13: 5136

    • For other synthetic methods of isoxazolines and isoxazoles, see:
    • 9a Perez C, Janin YL, Adams DR, Monneret C, Grierson DS. J. Chem. Soc., Perkin Trans. 1 1997; 901
    • 9b Caramella P, Bianchessi P. Tetrahedron 1970; 26: 5773
    • 9c Ballabio M, Destro R, Franzoi L, Gelmi ML, Pocar D, Trimarco P. Chem. Ber. 1987; 120: 1797
    • 9d Bujak P, Krompiec S, Malarz J, Krompiec M, Filapek M, Danikiewicz W, Kania M, Gębarowska K, Grudzka I. Tetrahedron 2010; 66: 5972
    • 9e de Almeida VM, dos Santos RJ, da Silva Góes AJ, de Lima JG, Correia CR. D, de Faria AR. Tetrahedron Lett. 2009; 50: 684
    • 9f Krompiec S, Bujak P, Szczepankiewicz W. Tetrahedron Lett. 2008; 49: 6071
    • 9g Brooking P, Crawshaw M, Hird NW, Jones C, MacLachlan WS, Readshaw SA, Wilding SW. Synthesis 1999; 1986
    • 9h Kim JN, Ryu EK. Bioorg. Med. Chem. Lett. 1992; 2: 941
    • 9i Pocar D, Rossi LM, Trimarco P, Vago L. J. Heterocycl. Chem. 1980; 17: 881
    • 9j Caramella P, Coda Corsico A, Corsaro A, Del Monte D, Marinone Albini F. Tetrahedron 1982; 38: 173
    • 9k Reddy AR, Goverdhan G, Sampath A, Mukkanti K, Reddy PP, Bandichhor R. Synth. Commun. 2012; 42: 639
    • 10a Danence LJ. T, Gao Y, Li M, Huang Y, Wang J. Chem. Eur. J. 2011; 17: 3584
    • 10b Wang L, Peng SY, Danence LJ. T, Gao Y, Wang J. Chem. Eur. J. 2012; 18: 6088
  • 11 CCDC-876696 (4aa) contains the supplementary crystallographic data for this paper. These data can be ontained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 12 Synthesis of 4aa–ia; General Procedure: Pyrrolidine 3a (74.5 μL, 0.88 mmol) and Et3N (53.9 μL, 0.4 mmol) was dissolved in CH2Cl2 (4 mL), the mixture was cooled to 0 °C and isovaleraldehyde 2ai (173.9 μL, 1.6 mmol) was added. Immediately afterwards, N-hydroxybenzimidoyl chloride 1a (62.2 mg, 0.4 mmol) in CH2Cl2 (0.2 mL) was added in five portions in five-minute intervals. After complete addition of N-hydroxybenzimidoyl chloride, the reaction mixture was stirred for a further 10 min at 0 °C, after which, it was allowed to warm to r.t. slowly and stirred for another 1.5 h. The reaction was then stopped and the product was purified by flash column chromatography with silica gel (EtOAc–hexane, 10%) to afford 4aaia.
  • 13 3-Phenyl-4-isopropyl-5-(pyrrolidin-1-yl)-4,5-dihydroisoxazoles (4aa): Yellow crystals. 1H NMR (300 MHz, CDCl3): δ = 7.75–7.69 (m, 2 H), 7.48–7.41 (m, 3 H), 5.41 (d, J = 2.7 Hz, 1 H), 3.40 (dd, J = 3.5, 2.8 Hz, 1 H), 2.91–2.68 (m, 4 H), 2.22–2.13 (m, 1 H), 1.83–1.78 (m, 4 H), 1.10 (d, J = 6.9 Hz, 3 H), 0.83 (d, J = 6.9 Hz, 3 H); 13C NMR (75 MHz, CDCl3): δ = 157.2, 129.6, 128.8, 126.8, 95.3, 56.2, 46.9, 28.1, 23.8, 20.6, 17.1; HRMS (ESI): m/z [M + H]+ calcd for C16H23N2O: 259.1805; found: 259.1812.
    • 14a Bloom JD. U. S. Patent 157900, 2004
    • 14b Di Grandi MJ, Curran KJ, Feigelson G, Prashad A, Ross AA, Visalli R, Fairhurst J, Feld B, Bloom JD. Bioorg. Med. Chem. Lett. 2004; 14: 4157