Synthesis 2013; 45(2): 246-250
DOI: 10.1055/s-0032-1317895
paper
© Georg Thieme Verlag Stuttgart · New York

Boron Trifluoride as an Efficient Catalyst for the Selective Synthesis of Tricyclic Monoperoxides from β,δ-Triketones and H2O2

Alexander O. Terent’ev*
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation   Fax: +7(499)1355328   Email: terentev@ioc.ac.ru
,
Ivan A. Yaremenko
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation   Fax: +7(499)1355328   Email: terentev@ioc.ac.ru
,
Vera A. Vil’
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation   Fax: +7(499)1355328   Email: terentev@ioc.ac.ru
,
Valery M. Dembitsky
b   Institute for Drug Research, P. O. Box 12065, Hebrew University, Jerusalem 91120, Israel
,
Gennady I. Nikishin
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation   Fax: +7(499)1355328   Email: terentev@ioc.ac.ru
› Author Affiliations
Further Information

Publication History

Received: 15 October 2012

Accepted after revision: 22 November 2012

Publication Date:
06 December 2012 (online)


Abstract

Boron trifluoride was found to serve as an efficient catalyst for the reaction of β,δ-triketones with H2O2 producing tricyclic monoperoxides in yields from 48–93%. BF3 acts simultaneously as a catalyst and co-solvent. The synthesis can be scaled up to tens of grams. The resulting peroxides can be easily isolated from the reaction mixture by column chromatography.

Supporting Information

 
  • References

    • 1a Jefford CW. Drug Discovery Today 2007; 12: 487
    • 1b Opsenica DM, Šolaja BA. J. Serb. Chem. Soc. 2009; 74: 1155 ; Chem. Abstr. 2010, 152, 159891
    • 1c Muregi FW, Ishih A. Drug Dev. Res. 2010; 71: 20
    • 1d Muraleedharan KM, Avery MA. Drug Discovery Today 2009; 14: 793
    • 1e O’Neil PM, Posner GH. J. Med. Chem. 2004; 47: 2945
    • 1f Dong Y. Mini-Rev. Med. Chem. 2002; 2: 113
    • 1g Vennerstrom JL, Fu H.-N, Ellis WY, Ager AL, Wood JK, Andersen SL, Gerena L, Milhous WK. J. Med. Chem. 1992; 35: 3023
    • 1h Barton V, Ward SA, Chadwick J, Hill A, O’Neill PM. J. Med. Chem. 2010; 53: 4555
    • 1i Ghorai P, Dussault PH, Hu C. Org. Lett. 2008; 10: 2401
    • 1j Tolstikov GA, Tolstikov AG, Tolstikova OV. Russ. Chem. Rev. 1996; 65: 769
    • 1k Gemma S, Kunjir S, Coccone SS, Brindisi M, Moretti V, Brogi S, Novellino E, Basilico N, Parapini S, Taramelli D, Campiani G, Butini S. J. Med. Chem. 2011; 54: 5949
    • 2a Keiser J, Veneziano V, Rinaldi L, Mezzino L, Duthaler U, Cringoli G. Res. Vet. Sci. 2010; 88: 107
    • 2b Shuhua X, Tanner M, N’Goran EK, Utzinger J, Chollet J, Bergquist R, Chen M, Zheng J. Acta Trop. 2002; 82: 175
    • 2c Keiser J, Brun R, Fried B, Utzinger J. Antimicrob. Agents Chemother. 2006; 50: 803
    • 2d Keiser J, Ingram K, Vargas M, Chollet J, Wang X, Dong Y, Vennerstrom JL. Antimicrob. Agents Chemother. 2012; 56: 1090
    • 2e Boissier J, Cosledan F, Robert A, Meunier B. Antimicrob. Agents Chemother. 2009; 53: 4903
    • 3a Dembitsky VM, Gloriozova TA, Poroikov VV. Mini-Rev. Med. Chem. 2007; 7: 571
    • 3b Jung M, Kim H, Lee K, Park M. Mini-Rev. Med. Chem. 2003; 3: 159
    • 3c Kim J, Park EJ. Curr. Med. Chem. Anticancer Agents 2002; 2: 485
    • 3d Dembitsky VM. Eur. J. Med. Chem. 2008; 43: 223
    • 3e Terzić N, Opsenica D, Milić D, Tinant B, Smith KS, Milhous WK, Šolaja BA. J. Med. Chem. 2007; 50: 5118
    • 3f Žižak Ž, Juranić Z, Opsenica D, Šolaja B.A. Invest. New Drugs 2009; 27: 432
    • 3g Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
  • 4 Denisov ET, Denisova TG, Pokidova TS. Handbook of Free Radical Initiators . Wiley; New York: 2003
    • 5a Lock CM, Brust H, van Breukelen M, Dalmolen J, Koeberg M, Stoker DA. Anal. Chem. 2012; 84: 4984
    • 5b Contini AE, Bellamy AJ, Ahad LN. Propellants, Explos., Pyrotech. 2012; 37: 320
    • 5c Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E. J. Am. Chem. Soc. 2005; 127: 1146
    • 5d Meyer R. Explosives 1977
    • 5e Denekamp C, Gottlieb L, Tamiri T, Tsoglin A, Shilav R, Kapon M. Org. Lett. 2005; 7: 2461
    • 5f Muller D, Levy A, Shelef R, Abramovich-Bar S, Sonenfeld D, Tamiri T. J. Forensic Sci. 2004; 49: 935
    • 5g Smith ME, Wall C, Fitzgerald M. Propellants, Explos., Pyrotech. 2012; 37: 282
    • 6a Organic Peroxides . Vol. 2. Swern D. Wiley-Interscience; New York: 1971
    • 6b Li Y, Hao H.-D, Zhang Q, Wu Y. Org. Lett. 2009; 11: 1615
    • 6c Bunge A, Hamann H.-J, Liebscher J. Tetrahedron Lett. 2009; 50: 524
    • 6d Ghorai P, Dussault PH. Org. Lett. 2008; 10: 4577
    • 6e Das B, Veeranjaneyulu B, Krishnaiah M, Balasubramanyam P. J. Mol. Catal. A: Chem. 2008; 284: 116
    • 6f Das B, Krishnaiah M, Veeranjaneyulu B, Ravikanth B. Tetrahedron Lett. 2007; 48: 6286
    • 6g Terent’ev AO, Platonov MM, Ogibin YuN, Nikishin GI. Synth. Commun. 2007; 37: 1281
    • 7a Milas NA, Mageli OL, Golubović A, Arndt RW, Ho JC. J. J. Am. Chem. Soc. 1963; 85: 222
    • 7b Rieche A, Bischoff C. Chem. Ber. 1962; 95: 77
    • 7c Cocker W, Grayson DH. J. Chem. Soc., Perkin Trans. 1 1975; 1347
    • 7d Vinogradova LP, Zav’yalov SI. Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 1961; 1482 ; Chem. Abstr. 1962, 56: 338b
    • 7e Vinogradova LP, Zav’yalov SI. Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 1961; 2050 ; Chem. Abstr. 1962, 57, 12344c
    • 7f Vinogradova LP, Rudenko BA, Zav’yalov SI. Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 1962; 1436 ; Chem. Abstr. 1963, 58, 2378g
    • 7g Rieche A, Eberhard S, Brand F. Liebigs Ann. Chem. 1969; 725: 93
    • 7h Opsenica D, Pocsfalvi G, Milhous WK, Solaja BA. J. Serb. Chem. Soc. 2002; 67: 465 ; Chem. Abstr. 2002, 137, 325555
  • 8 Rieche A, Bischoff C, Prescher D. Chem. Ber. 1964; 97: 3071
  • 9 Terent’ev AO, Yaremenko IA, Chernyshev VV, Dembitsky VM, Nikishin GI. J. Org. Chem. 2012; 77: 1833
    • 10a Terent’ev AO, Kutkin AV, Platonov MM, Ogibin YuN, Nikishin GI. Tetrahedron Lett. 2003; 44: 7359
    • 10b Terent’ev AO, Kutkin AV, Platonov MM, Vorontsov II, Antipin MYu, Ogibin YuN, Nikishin GI. Russ. Chem. Bull. 2004; 53: 681
    • 10c Zhang Q, Jin H.-X, Liu H.-H, Wu Y.-K. Chin. J. Chem. 2006; 24: 1190 ; Chem. Abstr. 2007, 147, 322759
    • 10d Zhang Q, Li Y, Wu Y.-K. Chin. J. Chem. 2007; 25: 1304 ; Chem. Abstr. 2008, 149, 288730
  • 11 Terent’ev AO, Platonov MM, Kashin AS, Nikishin GI. Tetrahedron 2008; 64: 7944
  • 12 Terent’ev AO, Boyarinova KA, Nikishin GI. Russ. J. Gen. Chem. 2008; 78: 592
  • 13 Terent’ev AO, Kutkin AV, Platonov MM, Starikova ZA, Ogibin YuN, Nikishin GI. Russ. Chem. Bull. 2005; 54: 1214
    • 14a Terent’ev AO, Kutkin AV, Starikova ZA, Antipin MYu, Ogibin YuN, Nikishin GI. Synthesis 2004; 2356
    • 14b Hamann H.-J, Hecht M, Bunge A, Gogol M, Liebscher J. Tetrahedron Lett. 2011; 52: 107
  • 15 Griesbeck AG, El-Idreesy TT, Fiege M, Brun R. Org. Lett. 2002; 4: 4193
  • 16 Terent’ev AO, Platonov MM, Sonneveld EJ, Peschar R, Chernyshev VV, Starikova ZA, Nikishin GI. J. Org. Chem. 2007; 72: 7237
  • 17 Wamser CA. J. Am. Chem. Soc. 1951; 73: 409
    • 18a Zmitek K, Zupan M, Stavber S, Iskra J. J. Org. Chem. 2007; 72: 6534
    • 18b Terent’ev AO, Kutkin AV, Platonov MM, Ogibin YuN, Nikishin GI. Tetrahedron Lett. 2003; 44: 7359
    • 18c Jefford CW, Li Y, Jaber A, Boukouvalas J. Synth. Commun. 1990; 20: 2589
  • 19 Ingram K, Yaremenko IA, Krylov IB, Hofer L, Terent’ev AO, Keiser J. J. Med. Chem. 2012; 55: 8700
  • 20 Christoffers J. J. Chem. Soc., Perkin Trans. 1 1997; 3141