Synlett 2013; 24(7): 831-836
DOI: 10.1055/s-0032-1317803
letter
© Georg Thieme Verlag Stuttgart · New York

A Metal-Free and Microwave-Assisted Efficient Synthesis of Diaryl Sulfones

Dalip Kumar*
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +44(113)343 6565   Email: dalipk@pilani.bits-pilani.ac.in
,
V. Arun
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +44(113)343 6565   Email: dalipk@pilani.bits-pilani.ac.in
,
Meenakshi Pilania
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +44(113)343 6565   Email: dalipk@pilani.bits-pilani.ac.in
,
K. P. Chandra Shekar
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +44(113)343 6565   Email: dalipk@pilani.bits-pilani.ac.in
› Author Affiliations
Further Information

Publication History

Received: 13 February 2013

Accepted after revision: 04 March 2013

Publication Date:
19 March 2013 (online)


Abstract

An efficient and general protocol for the synthesis of diaryl sulfones via the metal-free coupling of readily available diaryliodonium salts and arenesulfinates in PEG-400 under microwave irradiation has been developed. Utilizing this metal-free and eco-friendly protocol, we have prepared various diaryl sulfones in high yields and shorter reaction times under mild conditions. Furthermore, the coupling of diaryliodonium with arenesulfinate salts with and without copper iodide provides a convenient access to various diaryl sulfones with high selectivity.

Supporting Information

 
  • References and Notes

  • 1 The Chemistry of Sulfones and sulfoxides. Patai S, Rappoport Z, Stirling CJ. M. Wiley; New York: 1988
  • 2 Sturino CF, O’Neill G, Lachance N, Boyd M, Berthelette C, Labelle M, Li L, Roy B, Scheigetz J, Tsou N, Aubin Y, Bateman KP, Chauret N, Day SH, Lévesque J.-F, Seto C, Silva JH, Trimble LA, Carriere M.-C, Denis D, Greig G, Kargman S, Lamontagne S, Mathieu M.-C, Sawyer N, Slipetz D, Abraham WM, Jones T, McAuliffe M, Piechuta H, Nicoll-Griffith DA, Wang Z, Zamboni R, Young RN, Metters KM. J. Med. Chem. 2007; 50: 794
  • 3 Gopalsamy A, Shi M, Stauffer B, Bahat R, Billiard J, Ponce-de-Leon H, Seestaller-Wehr L, Fukayama S, Mangine A, Moran R, Krishnamurthy G, Bodine P. J. Med. Chem. 2008; 51: 7670
  • 4 Graybill BM. J. Org. Chem. 1967; 32: 2931
  • 5 Gilman H, Beaber NJ, Myers CH. J. Am. Chem. Soc. 1925; 47: 2047
    • 6a Zhu W, Ma D. J. Org. Chem. 2005; 70: 2696
    • 6b Cacchi S, Fabrizi G, Goggiamani A, Parisi LM. Org. Lett. 2002; 4: 4719
  • 7 Bandgar BP, Bettigeri SV, Phopase J. Org. Lett. 2004; 6: 2105
  • 8 Kar A, Sayyed IA, Lo WF, Kaiser HM, Beller M, Tse MK. Org. Lett. 2007; 9: 3405
  • 9 Tao Z, Zhen C. J. Chem. Res. 2000; 474
    • 10a Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
    • 10b Poshettiwar V, Varma RS. Acc. Chem. Res. 2008; 41: 629
  • 11 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 12a Jalalian N, Ishikawa EE, Silva LF, Olofsson B. Org. Lett. 2011; 13: 1552
    • 12b Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
  • 13 Vaddula BR, Varma RS, Leazer J. Eur. J. Org. Chem. 2012; 6852
  • 14 Guo F, Wang L, Wang P, Yu J, Han J. Asian J. Org. Chem. 2012; 1: 218
  • 15 Wang B, Qin L, Neumann KD, Uppaluri S, Cerny RL, DiMagno SG. Org. Lett. 2010; 12: 3352
  • 16 Ciana C.-L, Phipps RJ, Brandt JR, Meyer F.-M, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 458
  • 17 Beletskaya IP, Davydov DV, Moreno-Mañas M. Tetrahedron Lett. 1998; 39: 5621
  • 18 Wen J, Zhang R.-Y, Chen S.-Y, Zhang J, Yu X.-Q. J. Org. Chem. 2011; 77: 766
  • 19 Phipps RJ, McMurray L, Ritter S, Duong HA, Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
  • 20 Castro S, Fernandez JJ, Vicente R, Fananas FJ, Rodriguez F. Chem. Commun. 2012; 48: 9089
  • 21 Vaddula BR, Saha A, Leazer J, Varma RS. Green. Chem. 2012; 14: 2133
  • 22 Vaddula BR, Kumar D. Synthesis 2010; 1687
  • 23 General Procedure for the Synthesis of Diaryl Sulfones 5 The diaryliodonium salts were prepared according to the reported methods.29 A mixture of diaryliodonium salt 3ah (0.2 mmol) and arenesulfinate salt 4ac (0.2 mmol) in PEG-400 (0.1 mL) was placed in a sealed microwave vial and irradiated in MW (power 200 W) at 50 °C for 10 min. After completion, H2O (1 mL) was added, and the reaction mixture was extracted with EtOAc (3 × 5 mL). The combined organic extract was washed with H2O (4 mL) and dried over anhyd Na2SO4. The solvent was evaporated in vacuo, the solid thus obtained was washed with hexane and dried to afford 8am in high yields.
  • 24 General Procedure for the Copper-Catalyzed Preparation of Diaryl Sulfones 5 A mixture of diaryliodonium salts 3eg (0.2 mmol) and sodium p-toluenesulfinate 4a (0.2 mmol) in PEG-400 (0.1 mL). A catalytic amount of CuI (10 mol%) was added, and the reaction mixture was placed in a sealed microwave vial and irradiated in MW (power 200 W) at 50 °C for 15 min. After completion of the reaction, 20% Na2CO3 solution (2 mL) was added. The aqueous layer was extracted with EtOAc (3 × 5 mL), washed with H2O (7 mL), and dried over anhyd. Na2SO4. The solvents were evaporated under reduced pressure, and the residue so obtained was purified by column chromatography on silica gel (100–120 mesh) eluting with hexane–EtOAc (4:1) afforded the desired diaryl sulfones 5. Spectral Data for Selected Compounds
    Phenyl Tolyl Sulfone (5a)
    Yield 96%; white solid; mp 119–121 °C (lit.7 mp 119–122 °C). IR (KBr): 1303, 1149 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.36 (s, 3 H), 7.34 (d, 2 H, J = 8.0 Hz), 7.58–7.50 (m, 3 H), 7.76 (d, 2 H, J = 8.1 Hz), 7.87 (d, 2 H, J = 7.3 Hz). ESI-MS: m/z calcd for C13H13O2S [M + H]+: 233.1; found: 233.1. Bistolyl Sulfone (5b) Yield 92%; white solid; mp 157–159 °C (lit.7 mp 158–159 °C). IR (KBr): 1288, 1149 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.35 (s, 6 H,), 7.29 (d, 4 H, J = 8.0 Hz), 7.72 (d, 4 H, J = 7.7 Hz), ESI-MS: m/z calcd for C14H15O2S [M + H]+: 247.1; found: 247.2. p -Bromophenyl Tolyl Sulfone (5c) Yield 82%; white solid; mp 131–133 °C (lit.1 mp 132–134 °C). IR (KBr): 1319, 1149 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.36 (s, 3 H) 7.38 (d, 2 H, J = 8.1 Hz), 7.62 (d, 2 H, J = 8.6 Hz), 7.83–7.74 (4 H, m). ESI-MS: m/z calcd for C13H12BrO2S [M + H]+: 313.0; found: 313.0. p -Chlorophenyl Tolyl Sulfone (5d) Yield 83%; white solid; mp 116–118 °C (lit.1 mp 119–120 °C). IR (KBr): 1319, 1149 cm–1. ESI-MS: m/z calcd for C13H12ClO2S [M + H]+: 267.0; found: 267.1. 2,4,6-Trimethylphenyl Tolyl Sulfone (5e) Yield 89%; white solid; mp 116–117 °C (lit.30 mp 115–117 °C). 13C NMR (100 MHz, DMSO-d 6): δ = 143.18, 142.89, 139.90, 139.07, 133.60, 131.84, 129.25, 125.67, 22.18, 21.03, 20.42. ESI-MS: m/z calcd for C16H19O2S [M + H]+: 275.1; found: 275.2. p -Tolylsulfonylbenzoic Acid (5f) Yield 91%; white solid; mp 120–121 °C. IR (KBr): 3055-2553, 1689, 288, 1157 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.33 (3 H, s,), 7.31 (2 H, d, J = 7.5 Hz), 7.76 (2 H, d, J = 7.5 Hz), 7.93 (2 H, d, J = 7.9 Hz), 8.07 (2 H, d, J = 7.7 Hz). 13C NMR (100 MHz, DMSO-d 6): δ = 165.94, 144.85, 144.37, 137.27, 134.90, 130.13, 129.85, 127.35, 127.01, 20.67. p -Fluorophenyl Tolyl Sulfone (5g) Yield 88%; white solid; mp 85–87 °C (lit.1 mp 85–86 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 2.35 (s, 3 H), 7.47–7.42 (m, 4 H), 7.85 (d, 2 H, J = 6.6 Hz), 8.04 (dd, 2 H, J = 9.0, 5.1 Hz). Diphenyl Sulfone (5h) Yield 88%; white solid; mp 128–130 °C (lit.7 mp 127–129 °C). IR (KBr): 1303, 1149 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 7.59–7.51 (m, 6 H), 7.89 (d, 4 H, J = 8.6 Hz). p -Chlorophenyl Phenyl Sulfone (5j) Yield 96%; white solid; mp 77–79 °C (lit.30 mp 77–78 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 7.64 (d, 2 H, J = 7.8 Hz), 7.71 (d, 3 H, J = 8.6 Hz), 7.98 (d, 4 H, J = 8.2 Hz). ESI-MS: m/z calcd for C12H10ClO2S [M + H]+: 253.0; found: 253.1. 2,4,6-Trimethylphenyl Phenyl Sulfone (5k) Yield 91%; white solid; mp 78–80 °C (lit.30 mp 79–81 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 2.30 (s, 3 H), 2.56 (s, 6 H), 7.11 (s, 2 H), 7.42 (t, 2 H, J = 7.8 Hz), 7.53 (t, 1 H, J = 7.4 Hz), 7.73 (d, 2 H, J = 7.7 Hz). 13C NMR (100 MHz, DMSO-d 6): δ = 143.33, 141.25, 133.16, 131.58, 131.30, 129.72, 121.68, 113.42, 26.45, 20.21. ESI-MS: m/z calcd for C15H17O2S [M + H]+: 261.1; found: 261.1 2-Thienyl Tolyl Sulfone (5l) Yield 82%; white solid; mp 116–118 °C (lit.7 mp 118–120 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 2.34 (s, 3 H), 7.30 (d, 2 H, J = 8.0 Hz), 7.50–7.46 (m, 2 H, J = 7.4 Hz), 7.75 (d, 2 H, J = 8.0 Hz), 7.84 (d, 1 H, J = 7.5 Hz). Methyl Phenyl Sulfone (5m) Yield 83%; white solid; mp 145–146 °C (lit.8 mp 144–145 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 3.12 (s, 3 H), 7.63 (t, 2 H, J = 8.17 Hz), 7.71 (t, 1 H, J = 5.4 Hz), 7.94 (d, 2 H, J = 7.2 Hz). Methyl p-Tolyl Sulfone (5n) Yield 83%; white solid: mp 87 °C (lit.6a mp 144–145 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 2.44 (s, 3 H), 3.12 (s, 3 H), 7.43 (d, 2 H, J = 8.0 Hz), 7.80 (d, 2 H J = 8.1 Hz). Methyl p-Methoxyphenyl Sulfone (5p) Yield 84%; white solid: mp 119 °C (lit.6a mp 118–120 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 3.10 (s, 3 H), 3.87 (s, 3 H), 7.12 (d, 2 H, J = 8.8 Hz), 7.85 (d, 2 H, J = 8.8 Hz).
  • 25 Chen J, Spears SK, Huddleston GJ, Rogers RD. Green Chem. 2005; 7: 64
  • 26 Ochiai M. Topics in Current Chemistry. Vol. 224. Chap. 3 Springer; Berlin/Heidelberg: 2002
    • 27a Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 27b Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
    • 27c Bigot A, Williamison AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 27d Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
    • 27e Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
  • 28 Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
  • 30 Singh RP, Kamble RM, Chandra KL, Saravanan P, Singh VK. Tetrahedron 2001; 57: 241