Synlett 2013; 24(1): 45-48
DOI: 10.1055/s-0032-1317688
letter
© Georg Thieme Verlag Stuttgart · New York

New Silybin Scaffold for Chemical Diversification: Synthesis of Novel 23-Phosphodiester Silybin Conjugates

Armando Zarrelli
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
,
Valeria Romanucci
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
,
Marina Della Greca
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
,
Lorenzo De Napoli
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
,
Lucio Previtera
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
,
Giovanni Di Fabio*
Department of Chemical Sciences, University of Napoli 'Federico II', via Cintia 4, 80126 Napoli, Italy   Fax: +39(081)674393   Email: difabio@unina.it
› Author Affiliations
Further Information

Publication History

Received: 01 October 2012

Accepted after revision: 02 November 2012

Publication Date:
04 December 2012 (online)


Abstract

Silybin is the major component (ca. 30%) of the silymarin complex extracted from the seeds of Silybum marianum, with multiple biological activities operating at various cell levels. As an ongoing effort toward the exploitation of natural products as scaffolds for chemical diversification at readily accessible positions, we present here an efficient synthetic procedure to obtain new 23-phosphodiester silybin conjugates with different labels. A key point in our approach is the new 3,5,7,20-tetra-O-acetylsilybin-23-phosphoramidite, useful for a variety of derivatizations following a reliable and well-known chemistry. The feasibility of the procedure has been demonstrated by preparing new 23-silybin conjugates, exploiting standard phosphoramidite chemistry.

Supporting Information

 
  • References and Notes

  • 1 Havesteen B. Pharmacol. Ther. 2002; 96: 67
  • 2 Ferrazzano GF, Amato I, Ingenito A, Zarrelli A, Pinto G, Pollio A. Molecules 2011; 16: 1486
  • 3 Gažák R, Walterová D, Křen V. Curr. Med. Chem. 2007; 14: 315
  • 4 Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T. J. Pharmacol. Exp. Ther. 2009; 331: 319
  • 5 Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS. J. Surg. Res. 2007; 143: 58
  • 6 Sharma G, Singh RP, Chan DC, Agarwal R. Anticancer Res. 2003; 23: 2649
  • 7 Zhao H, Brandt GE, Galam L, Matts RL, Blagg BS. J. Bioorg. Med. Chem. Lett. 2011; 21: 2659 ; and references cited therein
  • 8 Gažák R, Valentová K, Fuksová K, Marhol P, Kuzma M, Medina MA, Oborná I, Ulrichová J, Křen V. J. Med. Chem. 2011; 54: 7397
  • 9 Wang F, Huang K, Yang L, Gong J, Tao Q, Li H, Zhao Y, Zeng S, Wua X, Stockigt J, Li X, Qu J. Bioorg. Med. Chem. 2009; 17: 6380
  • 10 Gažák R, Svobodová A, Psotová J, Sedmera P, Přikrylová V, Walterová D, Křen V. Bioorg. Med. Chem. 2004; 12: 5677
  • 11 Maitrejean M, Comte G, Barron D, El Kirat K, Conseil G, Di Pietro A. Bioorg. Med. Chem. Lett. 2000; 10: 157
  • 12 Křen V, Kubisch J, Sedmera P, Halada P, Přikrylová V, Jegorov A, Cvak L, Gebhardt R, Ulrichová J, Šimánek V. J. Chem. Soc., Perkin Trans. 1 1997; 2467
  • 13 Zarrelli A, Sgambato A, Petito V, De Napoli L, Previtera L, Di Fabio G. Bioorg. Med. Chem. Lett. 2011; 21: 4389
  • 14 De Napoli L, Di Fabio G, D’Onofrio J, Montesarchio D. Chem. Commun. 2005; 2586 ; and references cited therein
  • 15 Ettmayer P, Amidon GL, Clement B, Testa B. J. Med. Chem. 2004; 47: 2393
  • 16 Natarajan V, Jeong KS, Byeang K. Curr. Med. Chem. 2003; 10: 1973
  • 17 General Procedure for the Preparation of Phosphoramidite 3 To 3,5,7,20-tetra-O-acetylsilybin (2, 240.0 mg, 0.37 mmol) dissolved in anhydrous CH2Cl2 (5 mL), DIEA (390 μL, 2.22 mmol), and 2-cyanoethyl-N,N-diisopropylamino-chlorophosphoramidite (107 μL, 0.48 mmol) were mixed under argon. After 30 min the solution was diluted with EtOAc, and the organic phase was washed twice with brine and then concentrated. Silica gel chromatography of the residue (eluent n-hexane–EtOAc = 3:7, v/v, in the presence of 1% of Et3N), afforded desired compound 3 (205.0 mg, 0.24 mmol) in a 65% yield. Rf = 0.8 (n-hexane–EtOAc = 3:7, v/v). 1H NMR (500 MHz, CDCl3, r.t., mixture of diastereomers): δ = 7.11–6.90 (6 H, overlapped signals, H-13, H-15, H-16, H-18, H-21, H-22), 6.81 (1 H, s, H-8), 6.58 (1 H, s, H-6), 5.66 (1 H, d, J = 11.6 Hz, H-3), 5.37 (1 H, d, J = 11.6 Hz, H-2), 5.03 (1 H, d, J = 7.6 Hz, H-11), 4.13 (1 H, m, H-10), 3.90–3.60 {9 H, complex signals, OCH3, H-23, OCH 2CH2CN, N[CH(CH3)2]2}, 2.65 (2 H, complex signals, OCH2CH 2CN), 2.37, 2.32, 2.29, 2.04 (12 H, s for each, CH3 of acetyl groups), 1.25–1.15 {12 H, complex signals, N[CH(CH 3)2]2} ppm. 13C NMR (125 MHz, CDCl3, r.t., mixture of diastereomers): δ = 185.3 (C-4), 169.1 (C-7), 168.7, 167.8 (CO of acetyl groups), 162.5 (C-5), 156.3 (C-8a), 151.4 (C-19), 144.3 (C-20), 143.6 (C-16a), 140.2 (C-12a), 134.8 (C-14), 123.0 (C-17), 120.8 (C-15), 119.9 (C-22), 119.8, 117.6, 117.2 (C-13, C-16, OCH2CH2 CN), 116.2 (C-21), 111.4, 111.2, 110.6, 108.9 (C-6, C-8, C-18, C-4a), 81.0 (C-2), 76.2 (C-10), 75.8 (C-11), 73.3, 73.1 (C-3, C-3′), 62.6, 62.2 (C-23, C-23′), 58.8, 58.5 (OCH2CH2CN), 56.0 (OCH3), 43.3, 43.1 {N[CH(CH3)2]2}, 24.5 {N[CH(CH3)2]2}, 21.1, 20.9, 20.7, 20.4 (CH3 of acetyl groups), 19.9 (OCH2 CH2CN) ppm. 31P NMR (161.98 MHz, CDCl3): δ = 152.9, 150.2 ppm. ESI-HRMS (positive ions): m/z calcd for C42H47N2O15P: 850.2714; found: [MH]+: 851.2788; [MNa]+ = 873.2606.
  • 18 Janout V, Di Giorgio C, Regen SL. J. Am. Chem. Soc. 2000; 122: 2671
  • 19 Wallimann P, Marti T, Fürer A, Diederich F. Chem. Rev. 1997; 97: 1567
  • 20 Swaan PW, Hillgren KM, Szoka FC. Jr, Øie S. Bioconjugate Chem. 1997; 8: 520
  • 21 Banerjee SS, Aher N, Patil R, Khandare J. J. Drug Deliv. 2012; 2012: 103973
  • 22 Knop K, Hoogenboom R, Fischer D, Schubert US. Angew. Chem. Int. Ed. 2010; 49: 6288
  • 23 Richter Y, Fischer B. J. Biol. Inorg. Chem. 2006; 11: 1063
  • 24 Kachur AV, Manevich Y, Biaglow JE. Free Radical Res. 1997; 26: 399
  • 25 Wolf S, Zismann T, Lunau N, Meier C. Chem.–Eur. J. 2009; 15: 7656 ; and references cited therein
  • 26 Maier MA, Yannopoulos CG, Mohamed N, Roland A, Fritz H, Mohan V, Just G, Manoharan M. Bioconjugate Chem. 2003; 14: 18
  • 27 General Procedure for the Synthesis of Conjugates 5 (A–E) Derivative 3 (150 mg, 0.22 mmol) and the requisite compound AE (0.21 mmol, previously dried and kept under reduced pressure, were reacted with a 0.45 M tetrazole solution in anhydrous MeCN (1.0 mL, 0.45 mmol). The reaction was left under stirring at r.t. and monitored by TLC with an eluent system n-hexane–EtOAc = 1:1 (v/v). After 1 h, a 5.5 M t-BuOOH solution in decane (100 μL) was added to the mixture and left stirring at r.t. After 30 min the reaction mixture was diluted with CHCl3, transferred into a separatory funnel, washed three times with H2O, concentrated under reduced pressure, and purified by flash chromatography, eluting with n-hexane–EtOAc = 7:3 (v/v), to afford pure 4ae as a yellow-brown amorphous powder. Treatment with concd aq NH3 in MeOH (1:1, v/v) for 1 h at r.t., led to full removal of the acetyl and 2-cyanoethyl groups. The concentrated mixture was then purified on a silica gel column, eluting with CHCl3–MeOH containing increasing proportions of MeOH. Compounds 5ae thus obtained were converted into the corresponding sodium salts by cation exchange on a DOWEX (Na+ form) resin to obtain homogeneous samples in good yield (55–72%). See the Supporting Information. Compound 5a: NMR spectra of this compound showed dramatic line broadening, diagnostic of a slow equilibrium on the NMR time scale, which could suggest a strong propensity toward aggregation in CDCl3. 1H NMR (500 MHz, CDCl3, r.t., mixture of diastereomers): δ = 7.02–6.60 (6 H, complex signals), 5.85 (2 H, br s), 5.59 (1 H, dd, J = 11.9, 11.7 Hz), 5.11 (2 H, complex signals), 4.78 (1 H, br s), 4.04 (1 H, br signal), 3.95–3.63 (6 H, complex signals), 2.05 (2 H, br signal), 1.92–0.99 (26 H, complex signals), 0.85 (3 H, br s), 0.79 (3 H, d, J = 4.8 Hz), 0.74 (6 H, br s), 0.55 (3 H, s) ppm. 31P NMR (161.98 MHz, CDCl3): δ = –0.83 ppm. HRMS (MALDI-TOF, negative ions): m/z calcd for C52H66O13P: 929.4246; found: 929.4246 [M – H]. Compound 5b: 1H NMR (500 MHz, CD3OD, r.t., mixture of diastereomers): δ = 7.11–6.72 (6 H, complex signals), 5.91 (1 H, d, J = 1.5 Hz), 5.85 (1 H, m), 4.98–4.75 (2 H, complex signal), 4.41 (1 H, d, J = 11.5 Hz), 4.21–4.05 (5 H, m), 3.88–3.68 (24 H, complex signals) ppm. 31P NMR (161.98 MHz, CDCl3): δ = 3.1 ppm. HRMS (MALDI-TOF, negative ions): m/z calcd for C36H44O18P: 795.2271; found: 795.2271 [M – H]. Compound 5c: 1H NMR (500 MHz, CD3OD, r.t., mixture of diastereomers): δ = 7.79 (1 H, s), 7.11–6.72 (6 H, complex signals), 6.41 (1 H, dd, J = 6.8, 6.8 Hz), 5.91 (1 H, d, J = 1.5 Hz), 5.85 (1 H, m), 4.97–4.74 (2 H, complex signal), 4.65 (1 H, m), 4.41 (1 H, d, J = 11.5 Hz), 4.22–4.10 (4 H, m), 4.00–3.85 (5 H, complex signals), 2.44 (2 H, m), 1.99 (3 H, s) ppm. 31P NMR (161.98 MHz, CDCl3): δ = 3.3 ppm. HRMS (MALDI-TOF, negative ions): m/z calcd for C35H34N2O17P: 785.1600; found: 785.1602 [M – H]. Compound 5d: 1H NMR (500 MHz, CD3OD, r.t., mixture of diastereomers): δ = 8.56 (1 H, s), 8.29 (1 H, s), 7.11–6.72 (6 H, complex signals), 6.05 (1 H,d, J = 6.0 Hz), 5.91 (1 H, d, J = 1.5 Hz), 5.85 (1 H, m), 4.90 (2 H, complex signals), 4.63 (1 H, m), 4.54 (1 H, m), 4.41 (1 H, d, J = 11.5 Hz), 4.35 (1 H, m), 4.20 (2 H, m), 4.21–4.05 (3 H, m), 3.88–3.68 (3 H, s) ppm. 31P NMR (161.98 MHz, CDCl3): δ = 3.1 ppm. HRMS (MALDI-TOF, negative ions): m/z calcd for C35H33N5O16P: 810.1665; found: 810.1666 [M – H]. Compound 5e: 1H NMR (500 MHz, CD3OD, r.t., mixture of diastereomers): δ = 7.08–6.81 (6 H, complex signals), 5.95–5.89 (2 H, m), 5.07 (1 H, m), 4.97 (1 H, m), 4.52 (2 H, m), 4.24 (1 H, m), 4.06 (1 H, m), 3.95–3.68 (7 H, complex signals), 3.30 (1 H, m), 2.01–0.70 (33 H, complex signals) ppm. 31P NMR (161.98 MHz, CDCl3): δ = 4.3 ppm. ESI-MS (positive ions): m/z calcd for C49H63O16P: 938.39; found: 939.48 [MH]+; [MNa]+ = 961.37. HRMS (MALDI-TOF, negative ions): m/z calcd for C49H62O16P: 937.3781; found: 937.3782 [M – H].
  • 28 Stawinski J, Kraszewski A. Acc. Chem Res. 2002; 35: 952