Synlett 2012; 23(20): 2980-2984
DOI: 10.1055/s-0032-1317678
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Anhydrorhodovibrin and Analogues

Takeshi Yamada
a   OCARINA, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
b   Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Fax: +81(6)66053153   Email: ohfune@sci.osaka-cu.ac.jp   Email: hassy@sci.osaka-cu.ac.jp
,
Keiji Okada
a   OCARINA, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
b   Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Fax: +81(6)66053153   Email: ohfune@sci.osaka-cu.ac.jp   Email: hassy@sci.osaka-cu.ac.jp
c   CREST/JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
,
Tetsuro Shinada
b   Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Fax: +81(6)66053153   Email: ohfune@sci.osaka-cu.ac.jp   Email: hassy@sci.osaka-cu.ac.jp
,
Yasufumi Ohfune*
b   Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Fax: +81(6)66053153   Email: ohfune@sci.osaka-cu.ac.jp   Email: hassy@sci.osaka-cu.ac.jp
,
Hideki Hashimoto*
a   OCARINA, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
b   Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Fax: +81(6)66053153   Email: ohfune@sci.osaka-cu.ac.jp   Email: hassy@sci.osaka-cu.ac.jp
c   CREST/JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
› Author Affiliations
Further Information

Publication History

Received: 25 September 2012

Accepted after revision: 30 October 2012

Publication Date:
23 November 2012 (online)


Abstract

The synthesis of anhydrorhodovibrin and two analogues has been achieved in a highly efficient manner using a new Horner–Wadsworth–Emmons reagent bearing the Weinreb amide.

Supporting Information

 
  • References

    • 1a Fiedor L, Akahane J, Koyama Y. Biochemistry 2004; 43: 16487
    • 1b Fujii R, Onaka K, Kuki M, Koyama Y, Watanabe Y. Chem. Phys. Lett. 1998; 288: 847
    • 1c Fujii R, Ishikawa T, Koyama Y, Taguchi M, Isobe Y, Nagae H, Watanabe Y. J. Phys. Chem. A 2001; 105: 5348
    • 1d Zhang J.-P, Nagae H, Qian P, Limantara L, Fujii R, Watanabe Y, Koyama Y. J. Phys. Chem. B 2001; 105: 7312
    • 2a Cazzonelli C. Funct. Plant Biol. 2011; 38: 833
    • 2b Maoka T. Mar. Drug 2011; 9: 278
    • 2c Rao AV, Rao LG. Pharmacol. Res. 2007; 55: 207
    • 3a McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW. Nature (London) 1995; 374: 517
    • 3b Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ. Science 2003; 302: 1969
    • 4a Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y. Chem. Phys. Lett. 2004; 393: 184
    • 4b Kakitani Y, Akahane J, Ishii H, Sogabe H, Nagae H, Koyama Y. Biochemistry 2007; 46: 2181
    • 4c Iida K, Inagaki J, Shinohara K, Suemori Y, Ogawa M, Dewa T, Nango M. Langmuir 2005; 21: 3069
    • 4d Cogdell RJ, Gall A, Köhler J. Rev. Biophys. 2006; 39: 227
    • 5a Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. J. Phys. Chem. B 2008; 112: 9467
    • 5b Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Photosynth. Res. 2008; 95: 339
    • 5c Horibe T, Nakagawa K, Kusumoto T, Fujii R, Cogdell RJ, Nango M, Hashimoto H. Acta Biochim. Pol. 2012; 59: 97
    • 5d Yamamoto M, Horibe T, Nishisaka Y, Suzuki S, Kozaki M, Fujii R, Doe M, Nango M, Okada K, Hashimoto H. Bull. Chem. Soc. Jpn. 2012; ;in press; DOI: 10.1246/bcsj.20120230
  • 6 Surmatis JD, Ofner A, Gibas J, Thommen R. J. Org. Chem. 1966; 31: 186
    • 7a Laudrum JT. Carotenoids: Physical, Chemical and Biological Functions and Properties. CRC Press; Boca Raton: 2010
    • 7b Thirsk C, Whiting A. J. Chem. Soc., Perkin Trans. 1 2002; 999
    • 8a Carotenoids, Volume 2: Synthesis . Britton G, Liaaen-Jensen S, Pfander H. Birkhäuser; Basel: 1996
    • 8b Ito M, Yamano Y, Tode C, Wada A. Arch. Biochem. Biophys. 2009; 483: 224
    • 8c Ernst H. Pure Appl. Chem. 2002; 74: 2213

      For the synthesis of symmetrical related carotenoid, see:
    • 9a Isler O, Lindlar H, Montavon M, Rüegg R, Zeller P. Helv. Chim. Acta 1956; 39: 449
    • 9b McMurry JE, Fleming MP. J. Am. Chem. Soc. 1974; 96: 4708
    • 9c Ito M, Masahara R, Tsukida K. Tetrahedron Lett. 1977; 2767
    • 9d Akiyama S, Nakatsuji S, Eda S, Kataoka M, Nakagawa M. Tetrahedron Lett. 1979; 2813
    • 9e Haag A, Eugster CH. Helv. Chim. Acta 1982; 65: 1795
    • 9f Ji M, Choi H, Park M, Kee M, Jeong YC, Koo S. Angew. Chem. Int. Ed. 2001; 40: 3627
    • 9g Vaz B, Alvarez R, de Lera AR. J. Org. Chem. 2002; 67: 5040
    • 9h Choi S, Koo S. J. Org. Chem. 2005; 70: 3328
    • 9i Kajikawa T, Iguchi N, Katsumura S. Org. Biomol. Chem. 2009; 7: 4586
    • 9j Fontán N, Domínguez M, Álvarez R, de Lera ÁR. Eur. J. Org. Chem. 2011; 6704
    • 9k Fontán N, Álvarez R, de Lera AR. J. Nat. Prod. 2012; 75: 975

      For the synthesis of unsymmetrical related carotenoid, see:
    • 10a Zeng F, Negishi E. Org. Lett. 2001; 3: 719
    • 10b Yamano Y, Ito M. Chem. Pharm. Bull. 2001; 49: 1662
    • 10c Yamano Y, Sakai Y, Hara M, Ito M. J. Chem. Soc., Perkin Trans. 1 2002; 2006
    • 10d Yamano Y, Ito M. Chem. Pharm. Bull. 2004; 52: 780
    • 10e Yamano Y, Ito M. Org. Biomol. Chem. 2007; 5: 3207
    • 10f Yamano Y, Ito M, Wada A. Org. Biomol. Chem. 2008; 6: 3421
    • 10g Khachik F, Chang A.-N. J. Org. Chem. 2009; 74: 3875
    • 10h Yamano Y, Chary MV, Wada A. Chem. Pharm. Bull. 2010; 58: 1362
    • 11a Pommer H. Angew. Chem. 1960; 72: 811
    • 11b Magoulas GE, Bariamis SE, Athanassopoulos CM, Haskopoulos A, Dedes P, Krokidis MG, Karamanos NK, Kletsas D, Papaioannou D, Maroulis G. Eur. J. Med. Chem. 2011; 46: 721
    • 12a Johan L. Pure Appl. Chem. 1985; 57: 753
    • 12b Creemers AF. L, Lugtenburg J. J. Am. Chem. Soc. 2002; 124: 6324
    • 12c van Wijik AA. C, van de Weerd MB, Lugtenburg J. Eur. J. Org. Chem. 2003; 863
    • 13a Domínguez M, Álvarez R, Martras S, Farrés J, Parés X, de Lera AR. Org. Biomol. Chem. 2004; 2: 3368
    • 13b Domínguez M, Álvarez R, Borrás E, Farrés J, Parés X, de Lera AR. Org. Biomol. Chem. 2006; 4: 155
    • 14a Tanaka K, Struts AV, Krane S, Fujioka N, Salgado GF. J, Martinez-Mayorga K, Brown MF, Nakanishi K. Bull. Chem. Soc. Jpn. 2007; 80: 2177
    • 14b Valla A, Valla B, Le Guillou R, Cartier D, Dufosse L, Labia R. Helv. Chim. Acta 2007; 90: 512
    • 14c Laptev AV, Belikov NE, Lukin AY, Barachevskii VA, Alfimov MV, Demina OV, Varfolomeev SD, Shvets VI, Khodonov AA. High Energy Chem. 2008; 42: 601
  • 15 NaH in THF, DBU with LiCl in MeCN, LDA in THF or NaNH2 in CH2Cl2 did not affect the E/Z selectivity.
  • 16 Geometrical isomers of 19 were separable by silica gel column chromatography. The Arbuzov reaction of (E)-19 and (Z)-19 gave (E)-8 and (Z)-8, respectively without any isomerization. The olefination of 13 with E-isomer 8 and Z-isomer 8 were examined, respectively, to provide a 1:3 mixture of 20.
  • 17 The isomerization process to provide the E-conjugated double bond (C10 and C11) of 9 during the course of polyene chain elongation is interesting. We speculate that the isomerization could be triggered by means of the thermal isomerization. However, other possibilities such as photoisomerization and a base-catalyzed isomerization during the course of the HWE and Wittig reaction conditions as well as their complementary effects could not be ruled out.
    • 18a Bestmann HJ, Ermann P, Ruppel H, Sperling W. Liebigs Ann. Chem. 1986; 479
    • 18b Sliwka H.-R, Nokleby OW, Liaaen-Jensen S. Acta Chem. Scand., Ser. B 1987; 41: 245
    • 18c Rüegg R, Schwieter U, Ryser G, Schüdel P, Isler O. Helv. Chim. Acta 1961; 44: 985
  • 19 Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y. Photochem. Photobiol. 2001; 74: 444
  • 20 (R)-3: 1H NMR (600 MHz, C6D6): δ = 6.60–6.79 (m, 5 H), 6.51 (d, J = 13.8 Hz, 1 H), 6.50 (d, J = 14.4 Hz, 1 H), 6.49 (d, J = 14.4 Hz, 1 H), 6.24–6.38 (m, 7 H), 5.91 (dt, J = 15.6, 7.2 Hz, 1 H), 5.75 (dt, J = 15.6, 7.2 Hz, 1 H), 5.24 (m, 1 H), 3.08 (s, 3 H), 2.32 (d, J = 7.2 Hz, 2 H), 2.20 (dt, J = 13.8, 7.2 Hz, 1 H), 1.97–2.15 (m, 3 H), 1.90 (s, 3 H), 1.89 (s, 3 H), 1.89 (s, 3 H), 1.88 (s, 6 H), 1.69 (s, 3 H), 1.60 (s, 3 H), 1.54–1.60 (m, 1 H), 1.44–1.51 (m, 1 H), 1.19–1.29 (m, 1 H), 1.10 (s, 6 H), 0.95 (d, J = 6.6 Hz, 3 H). 13C NMR (150 MHz, C6D6): δ = 138.5, 138.0, 137.9, 137.7, 136.9, 136.8, 136.7, 136.3, 135.7, 135.6, 133.6, 133.3, 133.1, 131.3, 131.0 (2 × C), 130.8, 130.6, 128.7, 128.3, 126.1, 125.6, 125.3, 125.2, 74.7, 49.1, 44.6, 41.1, 37.2, 33.4, 26.1, 25.8, 24.9, 19.7, 17.7, 13.1 (2 × C), 12.9 (2 × C), 12.8. HRMS (EI): m/z [M]+ calcd for [C41H60O]+: 568.4644; found: 568.4645; [α]D 25.1 +51.0 (c = 0.1, CHCl3).
  • 21 5: 1H NMR (600 MHz, CDCl3): δ = 6.55–6.66 (m, 4 H), 6.48 (dd, J = 15.0, 11.1 Hz, 1 H), 6.37 (d, J = 15.6 Hz, 1 H), 6.35 (d, J = 15.0 Hz, 1 H), 6.26 (d, J = 10.2 Hz, 1 H), 6.17–6.24 (3 H), 6.16 (d, J = 15.5 Hz, 1 H), 6.10 (d, J = 11.4 Hz, 1 H), 5.94 (d, J = 11.1 Hz, 1 H), 5.71 (dt, J = 15.5, 7.4 Hz, 1 H), 3.23 (s, 3 H), 2.32 (d, J = 7.4 Hz, 2 H), 1.98 (s, 3 H), 1.96 (s, 3 H), 1.94 (s, 3 H), 1.92 (s, 3 H), 1.82 (s, 3 H), 1.81 (s, 3 H), 1.15 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 137.9, 137.5 (2 × C), 136.6, 136.2, 136.1, 135.9, 135.2, 134.8, 133.0, 132.6, 131.4, 130.6, 130.3, 129.3, 126.0, 125.3, 125.1, 124.8, 124.6, 75.1, 49.3, 43.6, 26.3, 24.9, 18.6, 13.0, 12.9, 12.8 (2 × C). HRMS (FAB): m/z [M]+ calcd for [C31H44O]+: 432.3392; found: 432.3390.